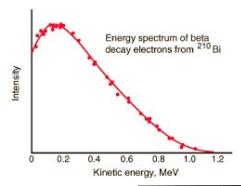
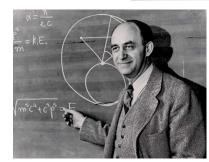
The Gadolinium Phase of the Super-Kamiokande Neutrino Detector

or:

How I Learned To Stop Worrying And Love The Plumbing

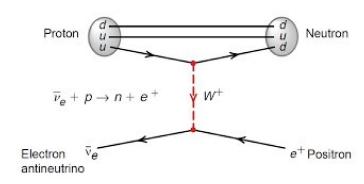

Matthew Nicholson University Of Warwick


Summary

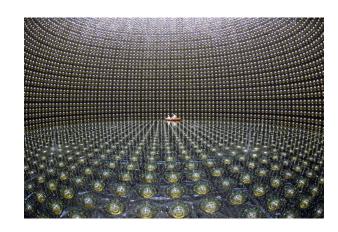

- Introduction to Neutrinos
- How to detect them
- The Super-Kamiokande detector
- Gadolinium phase of SK
- Gadolinium Absorbance Detector (GAD)
- Supernova Relic Neutrino (SRN) analysis

Introduction To Neutrinos

- Neutrinos were first proposed by Wolfgang Pauli to explain the continuous distribution of energies from the electron emitted in beta decay (1930)
- Beta decay was then formalised by Enrico Fermi into a four fermion point interaction (1933)
- Now find their place in the SM as 3 of 6 fundamental leptons, with electron, muon and tau flavours + antimatter counterparts
- Current outstanding questions of neutrinos include mass hierarchy and CP violation – can tell us about the matterantimatter asymmetry of the universe



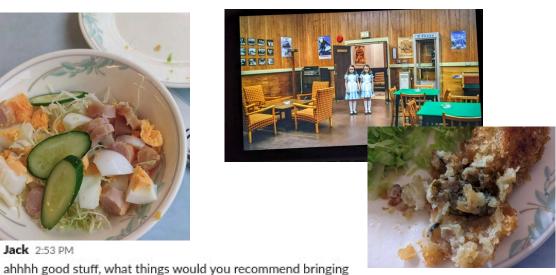
How To Detect Neutrinos


- Neutrinos were detected by Clyde Cowan and Frederick Reines with Project Poltergeist in 1956 by measuring inverse beta decay.
- Large tanks of water served as proton targets for the process, photomultiplier tubes detect the gamma signal from positron when it annihilates with a nearby electron.
- Doping water with Cadmium gives additional neutron capture signal – opens the door for Gadolinium.
- Where do you put the detector?

Super Kamiokande

- 21.5kton fiducial volume Water-Cherenkov detector located in Hida, Japan.
- 11,000+ Photomultiplier Tubes (PMTs) to capture light emitted from particle interactions.
- Successor to the "Kamioka Neutrino Detection Experiment"
- Physics goals: Proton Decay, Atmospheric + Solar Neutrinos, Supernova Early Warning System.
- The collaboration was awarded the 2015 Nobel Prize for experimental discovery of Neutrino Oscillation – implies neutrinos have non-zero mass.

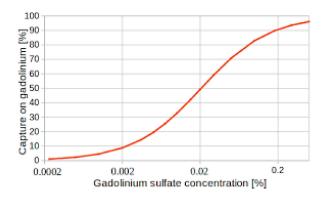
Some nice views from Japan...



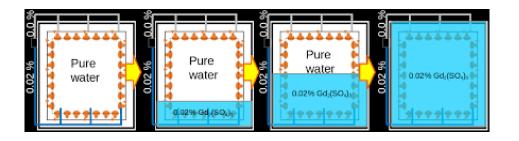
... and some not so nice views

What about

a nice gun

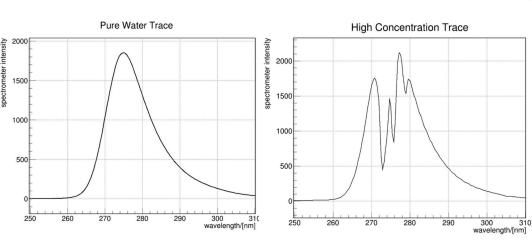

8 1 G

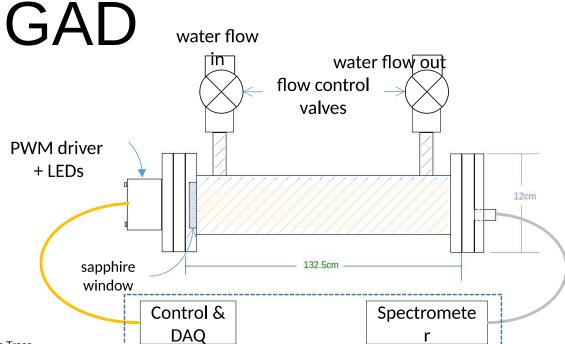
Please remove snow from the exhaust outlet of the heater in the balcony before using the heater; otherwise your room will get filled with carbon monoxide gas! ヒーターを使用する前に、ベランダにあるヒーターの排気口の プロリ除いて下さい。一酸化ガスが充満してしまいます!


you say that like it's a bad thing

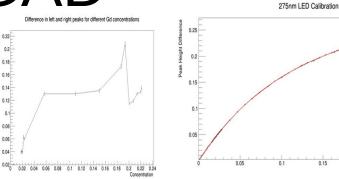
Gadolinium Phase

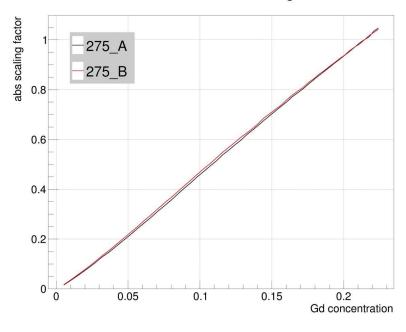
- Since 2020, SK been adding Gd2SO4 to its water. Gd is a rare earth element with a high affinity for neutron capture.
- SK's concentration of Gd2SO4 currently sits at 0.03%
- Motivation is similar to Poltergeist's Cd doped detector, delayed gamma burst from neutron capture can be detected by PMTs.
- SK has the largest order of Gd in human history.
- Great care has been taken to monitor transparency of the water + soak testing components




Gadolinium Absorbance Detector (GAD)

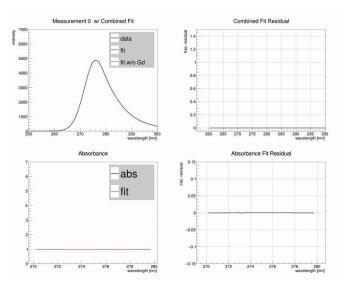
- In order to determine the rate of neutron capture precisely, and to ensure no Gd is being lost in filtration systems – measuring the concentration of Gd in the detector is crucial.
- Currently the concentration of Gd is determined by taking regular samples of water.
- The GAD is a device capable of measuring concentration of Gd with an accuracy of O(1%).
- GAD was installed in EGADS, the Super-K test-bed detector, in July 2022.

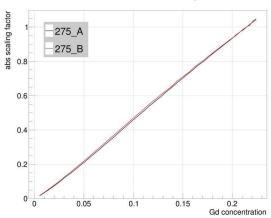

- GAD uses a UV source and spectrometer to measure characteristic Gd absorbance bands
- The body of the device is a 1.3 meter 316 stainless steel flow tube with removable endcaps
- At one end is a set of UV LEDs that illuminate Gd absorbace peaks at ~263nm - the other has a spectrometer for collecting and measuring light.



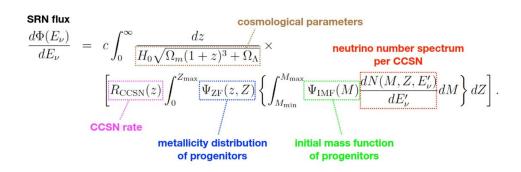
Calibrating GAD

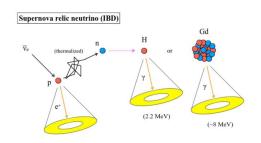
- Calibrating GAD involves testing the device's response to a range of different concentrations and building a calibration profile.
- We fill the GAD with a known quantity of pure water and then slowly raise it's concentration by adding Gd solution – taking measurements along the way
- Doing this we extract from the measurements a "metric" that characterises the amount of absorbance in the sample and mapping it to its given concentration.
- Then, for an unknown sample of water we can invert the calibration profile and calculate the concentration from the metric.
- In practice, we have a lot plumbing considerations to make: rouge bubbles, leaks + varying LED intensities, spectrometer warm up times.
- Takes an awful long time!!!




Most recent calibration

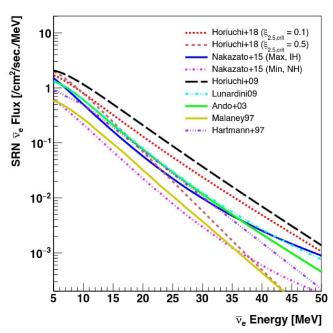
- Most recent calibration was done July 2023 in Mozumi over two days due to Kamioka mine rules.
- We (we?) waited for approximately 2 weeks for filling bubbles to disperse before calibrating – this has produced overall stability in subsequent measurements.
- Warwick GAD team are currently onsite to install further upgrades to device.

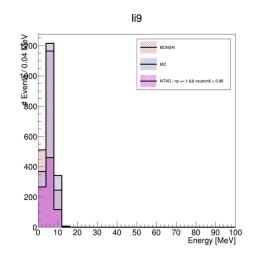


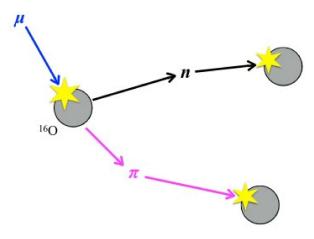


Supernova Relic Neutrinos (preliminary)

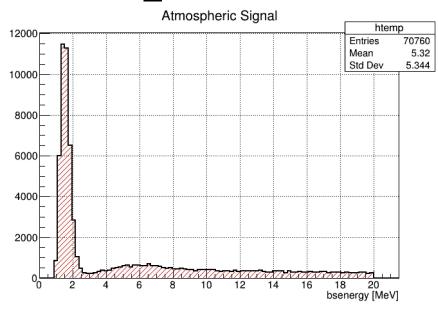
- Supernovae are immensely energetic yet incredibly rare astrophysical events.
- Only one galactic supernova 1987A has ever been recorded by neutrino detectors – considerable effort goes into providing early warning for others.
- However, a supernova is expected to occur in the universe roughly once a second – the neutrinos from these supernova constitute a collective flux called either the Diffuse Supernova Neutrino Background (DSNB) or Supernova Relic Neutrinos (SRN)
- Measuring the DSNB can tell us about supernova in general, the rate of star formation in the universe, and cosmology.

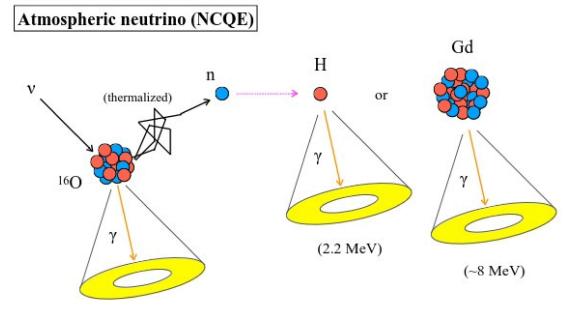



SRN Analysis

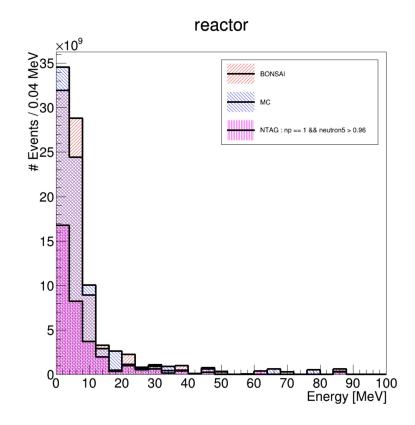

- Measuring the DSNB is practically very difficult due to a) very low event rates and b) irreducible backgrounds.
- These are mainly atmospheric, muon spallation events and reactor neutrinos that are normally indistinguishable from relic candidates.
- Gd + Neutron tagging allows for better rejection of some these backgrounds.
- Warwick are doing their own SRN analysis, largely written by ourselves – not a small task.

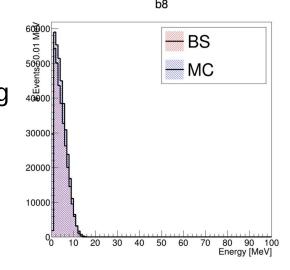
Background #1: Muon Spallation

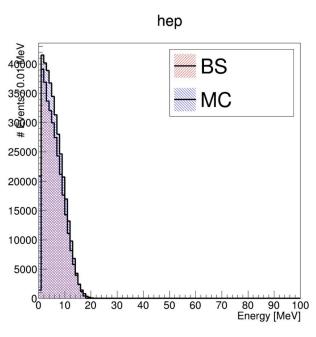

- High energy muons collide with isotopes in detector that produce pions and neutrons.
- Main spallation inducing isotope is Li9.
- Rejection of these events is performed by a) neutron cloud cuts and b) data-driven spallation likelihood cuts.



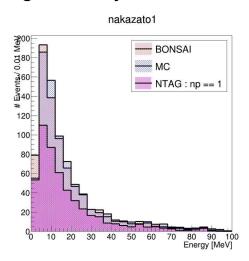
Background #2 : Atmospheric Neutrinos

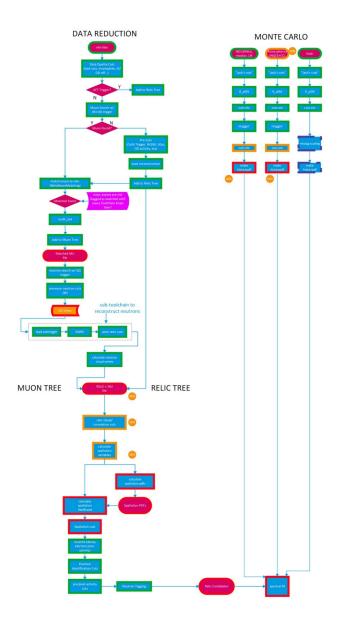

- We have NQCE mimicking IBD interaction with gamma + n and CC induced muons
- Both are removed through MC modelling, relying on sideband of theta_c > 30.


Background #3: Reactor Neutrinos


- Electron IBD from nuclear reactor plants
- Irreducible, since identical from signal
- Again removed by MC method

Background #4 : Solar neutrinos


- Electron neutrinos from the sun
- Totally removed by neutron tagging



Analysis Pipeline

- In principle the analysis is relatively simple, however with current SK tools it proves very difficult.
- We are gearing up (fingers crossed) to performing the first pass of the analysis
- Testing a variety of different SRN models with SK6+7 data.

upon this rock, I will build my church

Conclusion

- The addition of Gd to Super-K gives a new lease of life to the detector, particularly in the context of SRN analyses.
- GAD is performing stably in EGADS, maybe will sit in Super-K one day.
- Hopefully the first measurement of DSNB comes soon! With Warwick's analysis pipeline!

THANKS FOR LISTENING!

