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1 Variational Calculus of Functionals

1.1 Hamilton's Principle

In physics, we often encounter problem of minimizing value of certain integral, that somehow combines
di�erent functions of di�erent independent variables. Classical example would be for example minimization
of action of a particle in a mechanical system.
Hamilton's principle predicts that the particle follows a trajectory ~r(t) = (x(t); y(t); z(t)), where ~r is the
position vector pointing to a point on the trajectory and t is time, such that the action of the particle is
minimal. The action is de�ned as

S =

� tf

ti

L (~r; _~r; t)dt (1)

where _~r = d
dt
~r and L is called the Lagrangian and presents some combination of variables ~r, _~r and t. Since,

~r is also a function of independent variable t, L is not a function in the common sense. More importantly,
even S is not a function in common sense, since its value depends on the choice of functions ~r as well. We
call S a functional, to make this distinction.
We are interested in �nding the form of the functions ~r which minimize the value of the integral S. There is
a speci�c procedure we can take to determine the conditions on L . If we then now exact form of L , these
conditions become conditions on ~r, which will help us �nd minimal solutions, and therefore the trajectory
of a particle.
Consider the situation where we found ~r which does minimize S. Now, consider some �~r such that in every
point t, j�~rj � j~rj. These functions (there is again 3 of them in physical space) are called variations of ~r.
Since ~r was such that S was minimal, adding the variation �~r to the original function ~r and evaluating new
action using ~r + �~r instead of ~r should lead to no real change in the action, as the variation gets smaller.
Hence, we have

lim
j�~rj!0

�� tf

ti

L (~r + �~r; _~r + � _~r; t)dt

�
= S =

� tf

ti

L (~r; _~r; t)dt (2)

where � _~r = d
dt
�~r. Using the Taylor expansion of L in ~r and _~r, we can express the left-hand side of (2) as

lim
j�~rj!0

�� tf

ti

L (~r + �~r; _~r + � _~r; t)dt

�
=

� tf

ti

 
L (~r; _~r; t) +

X
i

@L

@ri
�ri +

X
i

@L

@ _ri
� _ri

!
dt

where ri and _ri are components of ~r and _~r, respectivelly (and similarly for �ri and � _ri).
Compairing this to the right hand side of (2), we obtain

� tf

ti

 X
i

@L

@ri
�ri +

X
i

@L

@ _ri
� _ri

!
dt

The terms in the second sum can be integrated by parts as

� tf

ti

@L

@ _ri
� _ridt =

�
@L

@ _ri
�ri

�tf
ti

�
� tf

ti

d

dt

�
@L

@ _ri

�
�ridt

Assuming that the variation of the path �~r does not move the end points (we are searching for trajectory of
the system between two points in space), we have �~r(ti) = �~r(tf ) = ~0. Hence, the �rst term in the equation
above is zero. Since the integral of the sum can be split into the sum of the integrals, we can write integrate
each of the terms separately to obtain

� tf

ti

X
i

�
@L

@ri
� d

dt

�
@L

@ _ri

��
�ridt = 0

Since we can choose �ri arbitrarily along the time t, ti � t � tf , the only possibility how to ensure that
this equality is satis�ed for any value of any �ri is by requiring

8i : @L
@ri

=
d

dt

�
@L

@ _ri

�
(3)

This is the Lagrange equation, famous in mechanics and �rst example of a di�erential equation derived
based on minimisation of a certain functional.
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1.2 General Functional Minimization

Consider an F = F (~y; @~y
@~x
; @

2~y
@~x2

; :::; @
n~y

@~xn
; ~x), where ~y is some vector �eld de�ned on independent variable

vector ~x. By this, we mean that F depends on some set of functions ~y, where each of the functions yi (there
is m of these functions) depends on all independent variables from the set ~x (on each xj , which there is k

of). The derivative notation @~y
@~x

signi�es that F depends on all derivatives @yi
@xj

for all possible values of i

and j. Same notation applies for higher order derivatives (indexing those by index l).
Lets start by generalizing problem from previous section without changing the boundary conditions - we
will try to extremize some variable I, de�ned as

I =

� ~xf

~xi

F (~y;
@~y

@~x
;
@2~y

@~x2
; :::;

@n~y

@~xn
; ~x)dkx

where ~xi and ~xf are some �xed end points. We will again introduce a small variation �~y to the functions,

with boundary conditions �~y(~xi) = �~y(~xf ) = ~0, applying also for all the derivatives of ~y. Assuming zero
change in I close to the extremum of I, we obtain following expression

� ~xf

~xi

dkx
X
i;j;l

@F

@
�
@lyi
@xl

j

��
 
@lyi
@xlj

!
= 0

where, to be clear, i goes from 1 to m, j goes from 1 to k and l goes from 0 to n. Decomposing the integral
of the sum as the sum of the integrals, each individual integral can be integrated by parts as

� ~xf

~xi

dkx
@F

@
�
@lyi
@xl

j

��
 
@lyi
@xlj

!
=

2
64 @F

@
�
@lyi
@xl

j

��
 
@l�1yi

@xl�1j

!375
~xf

~xi

�
� ~xf

~xi

dkx
d

dxj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �

 
@l�1yi

@xl�1j

!

We can recognize that the �rst term is zero, as the boundary conditions we de�ned required all derivatives
of all functions yi to be zero at the boundary. Hence, we obtained a new integral, which can be integrated
by parts again, this time leading to (disregarding the zero term arising from boundary conditions)

� ~xf

~xi

dkx
d

dxj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �

 
@l�1yi

@xl�1j

!
= �

� ~xf

~xi

dkx
d2

dx2j

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �

 
@l�2yi

@xl�2j

!

Which leads us to the generalization

� ~xf

~xi

dkx
@F

@
�
@lyi
@xl

j

��
 
@lyi
@xlj

!
= (�1)l

� ~xf

~xi

dkx
dl

dxlj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �yi

Hence the condition for extremisation of F becomes

� ~xf

~xi

dkx
X
i;j;l

(�1)l d
l

dxlj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �yi = 0

Since we can choose all yi arbitrarily, as long as they satisfy our boundary conditions, the only possibility
how to satisfy this condition is by requiring

8i :
X
j;l

(�1)l d
l

dxlj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA = 0 (4)

So, we have m di�erential equations in total (for each i), featuring k di�erent independent variables, of
order n+ 1. For example, for a F of type

F = F

�
z(x; y);

@z

@x
;
@z

@y
;
@2z

@x2
;
@2z

@y2
; x; y

�

we have a single equation (only one independent variable - z), of order 3, which has a form

@F

@z
� d

dx

 
@F

@
�
@z
@x

�
!
� d

dy

0
@ @F

@
�
@z
@y

�
1
A+

d2

dx2

 
@F

@
�
@2z
@x2

�
!
+

d2

dy2

0
@ @F

@
�
@2z
@y2

�
1
A = 0
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1.3 Useful Simpli�cations for Lagrange Equations

In physics, we most commonly come across the Lagrangian-type functionals, which in extremisation satisfy
equation (3). Consider now two special cases.

Functional is not explicitly dependent on the independent variable Then, we can �nd out that
(using @yi

@x
= y0i)

d

dx

�
y0i
@F

@y0i

�
= y00i

@F

@y0i
+ y0i

d

dx
(
@F

@y0i
)

Using the Euler-Lagrange equation

d

dx

�
y0i
@F

@y0i

�
= y00i

@F

@y0i
+ y0i

@F

@yi

We can also recognize now that the last part is the same as the total di�erential of F with respect to x

dF

dx
=

�
@yi
@x

@

@yi
+

@y0i
@x

@

@y0i
+

@

@x

�
F

since F does not depend explicitly on x. Hence, we have

d

dx

�
y0i
@F

@y0i

�
=

dF

dx

d

dx

�
F � y0i

@F

@y0i

�
= 0

F � y0i
@F

@y0i
= constant in x (5)

This equation is equivalent in some cases to Euler-Lagrange equations.

Functional does not explicitly depend on the independent variable According to Euler-Lagrange
equation

@F

@yi
= 0 =

d

dx

�
@F

@y0i

�
@F

@y0
= constant in x (6)

1.4 Boundary point on a line

For a special case of only one independent variable, we can also make a very useful generalization for the
boundary conditions of the functionals. Suppose that we have a functional F = F (~y; @~y

@x
; x), where ~y is the

vector of dependent variables, with m components.
Lets suppose that certain set of ~y does extremize functional I between certain end points a and b, while b
has to lie on contour of h(x; ~y). For simplicity, we can choose contour h(x; ~y) = 0. Now, suppose that we
add a small perturbation �~y to ~y. This moves the �nal point b to point b+�x. The boundary conditions
on �~y become �~y(a) = 0 and �~y(b + �x) + ~y(b + �x) 2 f~y : h(x; ~y) = 0g, i.e. the perturbation does not
move the �nal point b away from the countour of h. Same applies for the original, extremized �nal point b.
The integral for the unperturbed functional becomes

I =

� b

a

F (~y;
@~y

@x
; x)dx

and for the perturbed functional

I + �I =

� b+�x

a

F (~y + �~y;
@(~y + �~y)

@x
; x)dx

where �I is the perturbation in the functional. If the perturbation is small, we can approximate to the �rst
order � b+�x

a

F

�
~y + �~y;

@(~y + �~y)

@x
; x

�
dx =
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=

� b

a

F

�
~y + �~y;

@(~y + �~y)

@x
; x

�
dx+

� b+�x

b

F

�
~y + �~y;

@(~y + �~y)

@x
; x

�
dx �

�
� b

a

F

�
~y + �~y;

@(~y + �~y)

@x
; x

�
dx+ F

�
~y(b) + �~y(b);

@(~y + �~y)

@x
jb; b
�
�x �

�
� b

a

F

�
~y + �~y;

@(~y + �~y)

@x
; x

�
dx+ F

�
~y(b);

@~y

@x
jb; b
�
�x

The integral can be treated in the standard way - expanding in Taylor series of F

I + �I =

� b

a

"
F

�
~y;

d~y

dx
; x

�
+

mX
i=1

@F

@yi
�yi +

mX
i=1

@F

@ _yi
� _yi

#
dx+ F (b)�x

where I used shorthand F (~y(b); @~y
@x
jx=b; b) = F (b) and _yi =

dyi
dx

and the sums are over the components of ~y
(and �~y).
The �rst term, we can recognize as the unperturbed integral I. The last term can be integrated by parts
to obtain

I + �I = I +

� b

a

mX
i=1

@F

@yi
�yidx+

"
mX
i=1

@F

@ _yi
�yi

#b
a

�
� b

a

mX
i=1

d

dx

�
@F

@ _yi

�
�yidx+ F (b)�x

�I =

� b

a

mX
i=1

�
@F

@yi
� d

dx

�
@F

@ _yi

��
�yidx+

mX
i=1

@F

@ _yi
�yi

���
x=b

+ F (b)�x

When ~y extremizes I, �I = 0. If we want to allow consistency with the previous case (and e�ectively treat
�xed boundaries as a special case of this type of boundary problem), we will still require the integral part
to go to zero, so the Euler-Lagrange equations will still apply. There will be however an extra condition,
which will enable us to calculate the extremising functions vector ~y.
If ~y extremizes I and the Euler-Lagrange equations apply for the reason of consistency, we are left with.

mX
i=1

@F

@ _yi
�yi

���
x=b

= �F (b)�x

From now on until the �nal equation (7), consider all derivatives evaluated at the end point b. Lets think
about the value of �x. If the end point is to stay on the line given by h(x; ~y) = 0, the change in the value
of h must be zero for a point close to b. Hence

�h = 0 =
@h

@x
�x+

mX
i=1

@h

@yi
�yi

Consider the change that occurs in each yi due to change in x. There is a change due to continuation of yi
beyond x, but there is also a change due to the perturbation �yi. Since �yi is small, we can approximate
�yi to the �rst order as

8i : �yi � �yi(b) +
@yi
@x

�x = �yi + _yi�x

Hence, since h cannot change

0 =
@h

@x
�x+

mX
i=1

@h

@yi
(�yi + _yi�x)

So, we can express �x as

�x =
�Pm

i=1
@h
@yi

�yi
@h
@x

+
Pm

i=1
@h
@yi

_yi

Substituting this value back into the equation obtained from extremization, we arrive at

mX
i=1

@F

@ _yi
�yi =

Pm
i=1 F (b)

@h
@yi

�yi
@h
@x

+
Pm

i=1
@h
@yi

_yi

mX
i=1

@F

@ _yi

0
@@h

@x
+

mX
j=1

@h

@yj
_yj

1
A �yi =

X
i=1

F (b)
@h

@yi
�yi
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Figure 1: The variable end point visualisation in one of the independent variable yi. The function yi(x) is
in green, the variation of the function �(yi) is in red and is added on top of the function yi for clarity. The
intersection of the surface h(x; ~y) with the xyi plane is a curve, here shown as a dashed line.

X
i=1

�yi

2
4F (b) @h

@yi
� @F

@ _yi

0
@@h

@x
+

mX
j=1

@h

@yj
_yj

1
A
3
5 = 0

Since this equation has to apply for any �yi we can choose, the only way to reach the equality is if the term
inside the square brackets is zero for all i. Hence, we have

8i : F (b) @h
@yi

=
@F

@ _yi

0
@@h

@x
+

mX
j=1

@h

@yj
_yj

1
A (7)

Example : Linearly moving line boundary Consider a minimization of action of a free particle in
2D, which moves between point ~r0 = (x0; y0) and a variable boundary, which is a line satisfying equation
h(t; x; y) = ax+by+ct = 0. By Euler-Lagrange equations, we �nd the general form of minimized dependent
variables x(t) and y(t), and using (7) will allow us to �nd the global minimal action for the particle to
travel from ~r0 to some point on the boundary.
Solving the Euler-Lagrange equations (in 2D, free particle has Lagrangian L = 1

2m( _x2 + _y2))

@L

@x
=

d

dt

@L

@ _x

0 =
d

dt
(m _x)

For constant mass m in time, we then obtain

_x = const. in time = u0

x = u0(tb � t0) + x0

where t0 is the time when particle is at the starting point ~r0 and tb is the time when the particle arrives at
the boundary. Since L is symmetrical in exchange of _x and _y, analogous equation applies for y

y = v0(tb � t0) + y0

Now, we need to use the boundary conditions (7). In x

1

2
m(u20 + v20)

@h

@x

���
b
=

@L

@ _x

���
b

�
@h

@t

���
b
+

@h

@x

���
b
u0 +

@h

@y

���
b
v0

�

1

2
ma(u20 + v20) = mu0 (c+ au0 + bv0)

Similarly, in y
1

2
mb(u20 + v20) = mv0 (c+ au0 + bv0)

5
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Assuming that b 6= 0 and v0 6= 0, we can divide each side of the �rst equation by corresponding sides of the
second equation, which leads to

a

b
=

u0
v0

Or u0 =
a
b
v0. Substituting this into the �rst equation

1

2
ma

�
a2

b2
v20 + v20

�
= m

a

b
v0

�
c+

a2

b
v0 + bv0

�

1

2
a

�
a2

b2
+ 1

�
v20 =

ac

b
v0 + a

�
a2

b2
+ 1

�
v20

v0

�
1

2
a

�
a2

b2
+ 1

�
v0 +

ac

b

�
= 0

We therefore have two solutions. One, v0 = 0, which leads to u0 = 0. This solution is applicable if at time
t0, the point lies infront of the boundary h = 0 in the sense that as time passes, boundary approaches the
point ~r0. Then, the particle can reach h = 0 by simply resting in the original position.
The second solution, corresponding to case when the particle has to catch up to the boundary, has

v0 = �
ac
b

1
2a
�
a2

b2
+ 1
� = � 2cb

a2 + b2

and

u0 = � 2ca

a2 + b2

To interpret these results, consider the vector normal to the line h = 0 at all times, which has components
~n = (a; b). By calculating the component of vector product in the additional dimension z, which is not
present, we can �nd out whether ~n and ~v = (u0; v0) are parallel.

~n� ~v = �a 2cb

a2 + b2
+ b

2ca

a2 + b2
= 0

Hence the vectors are indeed parallel - the particle moves in direction perpendicular to the line. Furthermore,
we can notice that the condition h = 0 can be rewritten as

~n � ~r = �ct

Since ~n is independent of time, taking time derivative of both sides leads to

~n � ~vb = �c

where ~vb is the speed of points on the boundary. Hence

~n � ~vb = j~njvb;? = �c

vb;? =
�cp
a2 + b2

The magnitude of the speed of the particle is

j~vj =
s

4c2a2

(a2 + b2)2
+

4cb2

(a2 + b2)2
=

2cp
a2 + b2

We have already shown that ~v k ~n, and comparing the sign of vb;? to signs of u0 and v0 shows that particle
moves in the same direction as the line h = 0, but with twice the velocity.

6
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1.5 Constrained Optimization

Often, we might be interested in optimizing certain functional I

I =

� b

a

dkxF (~y;
@~y

@~x
; :::)

under some constraint on properties of the independent variables, which itself can be expressed as a func-
tional (for example, we would require a normalization of some of the independent variables). Lets consider
constraint given by functional J

J =

� b

a

dkxG(~y;
@~y

@~x
; :::)

which we require to be equal to some constant value for allowed solutions to minimization of I.
To solve this problem, we need to realize that both I and J are essentialy functions of di�erent possible
functions yi, which we try for the evaluation of the integral. Since functions yi can exist in some vector
space (although in�nite dimensional), we can approach this problem similarly as optimization of scalar
functions on vector spaces of �nite dimensions under some constraints. This type of optimization is solved
using Lagrange multipliers.
Consider a function f = f(~r), where ~r is some vector in a real space. We try to �nd extremal value of f at
some ~r such that some condition g(~r) = 0 is satis�ed at that point ~r. This means that the contours of the
two curves must exactly touch at this point, leading to requirement

rf = �rg

where � is the Lagrange multiplier. We could also take the small di�erence of the functions in some common
direction �~r and the equivalent condition would be that

rf � �~r = �f = �r � �~r = ��g

Hence �f = ��g. In the case of our functionals, considering the e�ect of small variations �yi in the functions
yi on I or J is exactly analogous. Therefore, at the point where I is extremal and J is still a speci�ed
constant value, it follows that

�I = ��J

We could have as well chosen � = ��0 as the Lagrange multiplier, without any loss of generality. If we do
this choice, we then arrive at expression

�I + �0�J = 0

Recalling the expressions for �I and �J as changes due to small variations �yi, we are left with (replacing
�0 with �, just a change of symbols)

�I + ��J =

� b

a

dkx
X
i;j;l

(�1)l d
l

dxlj

0
B@ @F

@
�
@lyi
@xl

j

�
1
CA �yi + �

� ~xf

~xi

dkx
X
i;j;l

(�1)l d
l

dxlj

0
B@ @G

@
�
@lyi
@xl

j

�
1
CA �yi =

=

� ~xf

~xi

dkx
X
i;j;l

(�1)l d
l

dxlj

0
B@@(F + �G)

@
�
@lyi
@xl

j

�
1
CA �yi = 0

Therefore, we obtain the result that the extremum of F constrained by G occurs for the same set of functions
yi that extremize new functional

K =

� b

a

dkx(F + �G)

without any constraints. Therefore, we can apply our previous results as Euler-Lagrange equations to solve
for K to �nd the required set of functions yi.
Importantly, our new functions yi will not be completly determined, because we introduce the new unknown,
�, into the system. To get rid of this �, we need to check for which � does J have the required value. This
can be somewhat simpli�ed by considering

K =

� b

a

dkx(F + �G) =

� b

a

dkxF + �

� b

a

dkxG = I + �J

7
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Hence

J =
@K

@�

So, the steps to �nd the solution are

1. Determine unconstrained minima of K = I + �J by solving equations (4) for function H = F + �G.

2. Resultant set of functions yi depends on the Lagrange multiplier �. To �nd its value, calculate

K =
� b
a
dkxH

3. The resultant integral K depends on �. By solving @K
@�

= J , we obtain the value of Lagrange
multiplier.

Alternatively, one can solve the constraint directly, by evaluating

J =

� b

a

dkxG

for the given set of functions yi, dependent on �.

1.5.1 Other Combined Functionals

We have seen that combining functionals and minimizing these combined functionals can help us solve spe-
ci�c constrained problems. One speci�c combined functional for problem of extremizing I under constraint
J is the functional � = I

J
. The variation in � can be approximated as (using derivatives)

�� = �

�
I

J

�
=

�IJ � I�J

J2
=

�I � I
J
�J

J
=

�I � ��J

J

Minimizing this functional follows exactly the same procedure as minimizing K, as long as J 6= 0, with the
single di�erence that � has opposite sign to �, which is not that important. Therefore, if instead of K we
minimize �, the resultant minimal value of � automatically corresponds to the Lagrange multiplier ��.

1.6 Sturm-Liouville Equations

We have seen that extremising functionals leads to sets of di�erential equations which need to be solved.
Inversly, we could search for functionals such that when these are extremised, the known set of di�erential
equations is obtained. The resultant form of the found functionals might help us learn more about the
system. One particular type of di�erential equations for which it is useful to search for the form of the
functionals are the Sturm-Liouville equations. These di�erential equations have form

d

dx

�
p(x)

dy

dx

�
+ q(x)y � ��(x)y = 0

where y(x) is some function de�ned on an interval x 2 (a; b) which vanishes at the boundaries of this
interval and �(x) is positive de�nite function on this interval.
To �nd the functional whose extremisation leads to these equations, start from the assumption that we will
be searching for a simple I =

�
F (x; y; dy

dx
). The extremisation equations are then simply Euler-Lagrange

equations

@F

@y
=

d

dx

 
@F

@ dy
dx

!

We can see that a total di�erential of some more complex function is present in both expressions. Lets then
start deriving the functional from assumption that these di�erentials are identical, i.e.

d

dx

 
@F

@ dy
dx

!
=

d

dx

�
p
dy

dx

�

@F

@ dy
dx

= p
dy

dx

F =
1

2
p

�
dy

dx

�2

+ Z(y; x)

8
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where Z is some unknown function of y and x. Other parts of F can be derived upon considering that
the requirement �(x) > 0 on (a; b) is similar to requirement for weight functions on some intervals (such
as probability distributions etc.). We could then try to write F as combined function F = G + �H and
do constrained minimization of F with constraining function H, corresponds to the term with the weight
function �. The extremisation of H alone would then lead to

@H

@y
=

d

dx

@H

@ dy
dx

= ��(x)y

H =
1

2
��y2 + Z 0

�
x;

dy

dx

�
Finally, the remaining term qy can be inserted into the G part of the functional F . Since we have already
assigned the total derivative part of G, we have to assign the term to the other term in Euler-Lagrange
equations, i.e.

@G

@y
+ qy = 0

(since we assigned the total derivative on the opposite side to the side of the total di�erential in E-L
equations, we need assign the term qy to the same side as the derivative in y)

G = �1

2
qy2 + Z 00

�
x;

dy

dx

�

Combining all functions together, we have our guess for the functional form

K =

� b

a

dx

 
1

2
p

�
dy

dx

�2

� 1

2
qy2 +

1

2
��y2

!
=

1

2

� b

a

dx

 
p

�
dy

dx

�2

� qy2 + ��y2

!
=

1

2

� b

a

Fdx

K will be extremal even when 2K will be extremal, so we can disregard the factor of one half before
the integral. To check whether this functional is indeed a correct form of the functional, we apply Euler-
Lagrange conditions

@F

@y
� d

dx

@F

@ dy
dx

= 0

�2qy + 2��y � d

dx

�
2p

dy

dx

�
= 0

d

dx

�
p
dy

dx

�
+ qy � ��y = 0

Therefore, the functional of form

K =

� b

a

dx

 
p

�
dy

dx

�2

� qy2 + ��y2

!

is the correct combined functional whose unconstrained extremisation leads to Sturm-Liouville equations
as written above. The combined functional consists of

K = I + �J

where

I =

� b

a

dx

 
p

�
dy

dx

�2

� qy2

!

and

J =

� b

a

�y2dx

Now, we might be interested in searching for the form of functional � = I
J
, as its extremisation provides us

automatically with values �. To do this, consider multiplying Sturm-Liouville equations by y and integrating
over the domain (a; b) � b

a

dx

�
y
d

dx

�
p
dy

dx

�
+ qy2 � ��y2

�
=

� b

a

(0)dx = 0

9
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� b

a

y
d

dx

�
p
dy

dx

�
dx+

� b

a

(qy2 � ��y2)dx = 0

Integrating �rst integral by parts�
yp

dy

dx

�b
a

�
� b

a

p

�
dy

dx

�2

dx+

� b

a

(qy2 � ��y2)dx = 0

Since y vanishes at the boundaries a and b, the �rst term goes to zero. Hence

��
� b

a

�y2dx =

� b

a

 
p

�
dy

dx

�2

� qy2

!
dx

�� =

� b
a

�
p
�
dy
dx

�2
� qy2

�
dx

� b
a
�y2dx

=
I

J
= �

Hence, we obtained the expected form for �, with opposite sign to �.

2 Complex Di�erentiation

Complex numbers are very useful construct enabling elegant description of real systems. Furthermore, some
properties of the complex plane make some calculations in this plane relatively easy, with applications to
calculations of real variables and unknowns. For example, calculation of certain real integrals is much easier
when considering integration in the complex plane.
To understand why this is the case, we need to study the topology and calculus of complex numbers in
more detail. We will start by the easiest part of the calculus - di�erentiation.

2.1 Complex Limit

For real numbers, we would de�ne a limit of a function as a function value at a number, which is approaching
some target number either in the positive (from the left) or the negative (from the right direction). But,
in complex plane, there is no natural ordering of the elements, so we cannot de�ne a de�nite positive or
negative direction.
Therefore, the de�nition of derivative is somewhat stronger in complex plane. While the real derivative is
de�ned to exist when the certain limit in the positive direction and certain limit in the negative direction are
equal, in complex plane, a derivative of a function is only de�ned when the limit in any possible direction
is the same.
Consider a complex function f(z) of a complex variable z. We de�ne the derivative of f as

f 0(z0) = lim
z!z0

f(z)� f(z0)

z � z0

When we approach z0 along certain path, we can assume that close to z0 path is linear. Let ~a = (a1; a2)
be the unit vector parallel to the direction of the path close to z0 in the complex plane. Lets also write the
complex function in terms of its real and complex parts

f(z) = u(z) + iv(z)

where u and v are real. Lets also de�ne z = x+ iy, so we have

f(z) = u(x+ iy) + iv(x+ iy) = u(x; y) + iv(x; y)

Hence, the derivative becomes

f 0(z0) = lim
h!0

f(z0 + a1h+ ia2h)� f(z0)

a1h+ ih2
=

= lim
h!0

[u(x0 + a1h; y0 + a2h) + iv(x0 + a1h; y0 + a2h)� u(x0; y0)� iv(x0; y0)](a1h� ia2h)

a21h
2 + a22h

2
=

= lim
h!0

[u(x0 + a1h; y0 + a2h)� u(x0; y0)](a1 � ia2)

(a21 + a22)h
+ i lim

h!0

[v(x0 + a1h; y0 + a2h)� v(x0; y0)](a1 � ia2)

(a21 + a22)h

10
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Using the fact that ~a1 is a unit vector, (a
2
1+a22) = 1. Furthermore, since u and v are real functions, we can

use the de�nition of a derivative of a real function

f 0(z0) =

= (a1 � ia2) lim
h!0

u(x0 + a1h; y0 + a2h)� u(x0; y0)

h
+ i(a1 � ia2) lim

h!0

v(x0 + a1h; y0 + a2h)� v(x0; y0)

h
=

= (a1 � ia2)

�
@u

@x

���
z0
a1 +

@u

@y

���
z0
a2

�
+ (a2 + ia1)

�
@v

@x

���
z0
a1 +

@v

@y

���
z0
a2

�
=

= a21
@u

@x

���
z0
+ a22

@v

@y

���
z0
+ a1a2

�
@u

@y

���
z0
+

@v

@x

���
z0

�
+ i

�
a21

@v

@x

���
z0
� a22

@u

@y

���
z0
+ a1a2

�
@v

@y

���
z0
� @u

@x

���
z0

��
Now, in order for f to have the derivative at z0, this must be independent of the choice of a1 and a2. This
imposes certain conditions on f (or equivalently on u and v). To see how these conditions apply, it is more
clear to consider to special cases of directions to derive some conditions, that, as we will see, guarantee that
the derivative is independent of the direction.
Consider �rst a special case when a1 = 1 and a2 = 0 (approach from the left along a line parallel to real
axis). Then

f 0(z0) =
@u

@x

���
z0
+ i

@v

@x

���
z0

Second special case is for approach from the bottom along line parallel to the imaginary axis, which
corresponds to a1 = 0 and a2 = 1. Then

f 0(z0) =
@v

@y

���
z0
� i

@u

@y

���
z0

Equating the derivative for these two special paths leads to famous Cauchy-Riemann conditions

@u

@x

���
z0

=
@v

@y

���
z0
;
@u

@y

���
z0

= �@v

@x

���
z0

(8)

Now, consider applying applying these special conditions for very special set of paths in our expression for
general approach part. It becomes

f 0(z0) = a21
@u

@x

���
z0
+ a22

@u

@x

���
z0
+ a1a2

�
@u

@y

���
z0
� @u

@y

���
z0

�
+ i

�
�a21

@u

@y

���
z0
� a22

@u

@y

���
z0
+ a1a2

�
@u

@x

���
z0
� @u

@x

���
z0

��

f 0(z0) =
@u

@x

���
z0
(a21 + a22)� i

@u

@y

���
z0
(a21 + a22) =

@u

@x

���
z0
� i

@u

@y

���
z0

where I used the fact that ~a1 is the unit vector, and therefore a21+a22 = 1. We can see that this expression is
independent of the choice of a1 or a2. This means that the conditions (8) are not exclusive to a special two
paths, but are rather su�cient conditions for the derivative of f to be identical for all possible approach
paths.
When a function satis�es these conditions, it is said to be holomorphic. In our course, it is equivalent
with saying that the function is analytic. Since these conditions apply at a point, the function is also
holomorphic only at those points where the Cauchy-Riemann conditions apply.
It should be noted that the Cauchy-Riemann equations can be usefully rewritten in a fully complex form
as

@f

@x
= �i@f

@y
(9)

2.1.1 Rules for Calculating derivatives

Since the de�nition of the complex derivative was similar in form to the de�nition of the real derivative,
most of the properties of real derivatives (speci�cally, those following from the linearity of the de�nition)
apply for complex derivatives as well. Speci�cally, denoting the complex derivative as a prime, for complex
functions of complex variables f and g (af + bg)0 = af 0 + bg0, where a and b are complex constants,

(fg)0 = f 0g + fg0,
�
f
g

�0
= f 0g�fg0

g2
, f = gn : f 0 = ngn�1g0 where n is an integer, (zn)0 = nzn�1 where z is

the complex variable.

11
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2.2 Special Cases of Complex Derivative

To appreciate the di�erence of complex derivative of complex function, we will consider several di�erent
special cases of function f .

Complex Derivative of Real Function Consider f being real, i.e. v = 0. Then, the Cauchy-Riemann
equations imply

@u

@x
= 0 ;

@u

@y
= 0

therefore, since for real f , f = u, any real function of complex variables that is to be holomorphic has to
be a real constant.

Complex Derivative of Function of Only Real Variable Consider now that f = u(x) + iv(x), i.e.
there is no dependence on the imaginary part of the number z. Then, the Cauchy-Riemann equations
dictate that

@u

@x
= 0 ;

@v

@x
= 0

Hence, again, if this type of function is to be holomorphic, it has to be a constant.

Complex Function of Two Real Variables Consider that now we would de�ne the variables x and y
to be the real independent variables instead of a part of the complex variable z. We can actually derive x
and y from the de�nition of z = x+ iy as x = 1

2 (z+ �z) and y = 1
2i (z� �z) where �z is the complex conjugate

of z. Then, consider that instead of f being a function of z, let f = f(x; y). Then

@f

@z
=

@f

@x

@x

@z
+

@f

@y

@y

@z
=

1

2

�
@f

@x
� i

@f

@y

�

@f

@�z
=

@f

@x

@x

@�z
+

@f

@y

@y

@�z
=

1

2

�
@f

@x
+ i

@f

@y

�
For complex function of two real variables, Cauchy-Riemann conditions do not apply, hence both of these
expressions are generally non-zero and therefore

@f

@z
+

@f

@�z
=

@f

@x

However, if f was a function of complex variable, where Cauchy-Riemann conditions apply, then

@f

@�z
= 0

And so
@f

@z
+

@f

@�z
=

1

2

�
@f

@x
� i

@f

@y

�
These two expressions are generally di�erent. The reason for this discrepancy is essentially the fact that the
geometry/metric in the complex plane is fundamentaly di�erent from the 2D real plane. In the de�nition
of the derivative of function of two real derivatives, we would always divide by small real factor h, while
for the complex derivative, the factor can be imaginary/complex.
As an aside, we should note that the expression @f

@�z = 0 implies that f cannot depend on �z if it is holomorphic.
Therefore, we have to be able to express f using z only, if we translate from x and y to z and �z.

2.3 Laplace's Equation in 2D

Consider a real part of the complex function f = u(x; y) + iv(x; y) where u and v are real. What is r2u
equal to? We can actually evaluate this expression, as we know that u and v must satisfy Cauchy-Riemann
equations. So

r2u =
@2u

@x2
+

@2u

@y2
=

@

@x

@u

@x
+

@

@y

@u

@y
=

@

@x

@v

@y
� @

@y

@v

@x
=

@

@x

@v

@y
� @

@x

@v

@y
= 0

Hence, u satis�es the Laplace's equation r2u = 0. Furthermore

r2v =
@

@x

@v

@x
+

@

@y

@v

@y
= � @

@x

@u

@y
+

@

@y

@u

@x
= 0

12
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Hence, both components of the complex function satisfy the Laplace's equation, hence any complex function
f satis�es r2f = 0.
Speci�c application of this result is calculating other solutions of the Laplace's equation given some known
solutions. For example, lets say we know that h(x; y) satis�es the Laplace's equation. We can than search
for ~h(x; y), which also satis�es Laplace's equation, which will correspond to the other component of the
complex function g. For example, we could assign that h is the real part of g, and then g = h(x; y)+i~h(x; y).
Then, instead of solving second order partial di�erential equation again with search for a di�erent solution,
we can just apply Cauchy-Riemann conditions to �nd ~h from h. We call ~h the harmonic conjugate of h.
Similarly, h is the harmonic conjugate of ~h, since Cauchy-Riemann conditions are equalities and hence
apply in both directions.

Finding Harmonic Conjugates For example, consider f = ex cos(y). We can see that f satis�es the
Laplace's equation. How to �nd harmonic conjugate of f , g? We start by assuming that f is the real part
of some complex function. Then, Cauchy-Riemann conditions between f and g are

@f

@x
= ex cos(y) =

@g

@y

@f

@y
= �ex sin(y) = �@g

@x

From the �rst equation, it follows that

g = ex sin(y) + F (x)

where F (x) is some function of x. From the second equation, it follows that

g = ex sin(y) + F 0(y)

where F 0(y) is some function of y. By comparing these expressions, we determine that

g = ex sin(y)

which also clearly satis�es the Laplace's equation. Hence, we have found our harmonic conjugate. The
complex function in this case would be f + ig = ex(cos(y) + i sin(y)) = exeiy = ex+iy = ez.

2.4 Conformal Mappings

Conformal mappings are maps F : R2 ! R
2 such that any two curves in the domain of F that intersect

at certain point ~x0 at angle � intersect at that same angle � in the image of F at F (~x0). To put more
meaning to these conditions, consider two curves 1 and 2. The coordinates of the points on these lines
are parametrized by some real t as x1(t) and y1(t) for 1 and x2(t) and y2(t) for 2. Then, the tangential
vector to 1 at ~x0 is

~s1 =

�
dx1
dt

���
~x0
;
dy1
dt

���
~x0

�
Similarly

~s2 =

�
dx2
dt

���
~x0
;
dy2
dt

���
~x0

�

is the tangential vector to 2 at the intersection point ~x0.
For the sake of brevity, I will drop the explicit marking of the point at which the derivative is taken and

replace total derivatives with t by the dot notation, i.e. dx1
dt

���
~x0

= _x1.

The angle at which these two curves intersect is given by the dot product of the tangential vectors as

cos� =
~s1 � ~s2
j~s1jj~s2j

This can be determined to be, using the expressions for tangential vectors

cos� =
_x1 _x2 + _y1 _y2p

( _x21 + _y21)( _x
2
2 + _y22)

13
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Consider now general mapping F , which maps each point (x; y) to point (x0; y0) as

x0 = u(x; y)

y0 = v(x; y)

Consider now the images of 1 and 2 and their intersection at F (~x0). The tangential vector to the image
of 1 (which I will denote as 01) is

(~s1)
0 =

�
dx01
dt

;
dy01
dt

�

where the functions
dx0

1

dt
and

dy0
1

dt
can be found via chain rule as

dx01
dt

=
du(x1; y1)

dt
=

@u

@x

dx1
dt

+
@u

@y

dy1
dt

For more brevity, I will denote the partial derivatives in the index notation, as @u
@x

= ux. Hence

dx01
dt

= ux _x1 + uy _y1

Similarly
dy01
dt

= vx _x1 + vy _y1

Hence
(~s1)

0 = (ux _x1 + uy _y1; vx _x1 + vy _y1)

We could similarly show that the tangetial vector to the image of 2 is

(~s2)
0 = (ux _x2 + uy _y2; vx _x2 + vy _y2)

Then, the angle at which these images intersect is given again by the dot product of these vectors as

cos�0 =
(~s1)

0 � (~s2)0
j(~s1)0jj(~s2)0j =

(ux _x1 + uy _y1)(ux _x2 + uy _y2) + (vx _x1 + vy _y1)(vx _x2 + vy _y2)p
(ux _x1 + uy _y1)2 + (vx _x1 + vy _y1)2

p
(ux _x2 + uy _y2)2 + (vx _x2 + vy _y2)2

=

=
_x1 _x2(u

2
x + v2x) + _y1 _y2(u

2
y + v2y) + ( _x1 _y2 + _x2 _y1)(uxuy + vxvy)q

_x21(u
2
x + v2x) + _y21(u

2
y + v2y) + 2 _x1 _y1(uxuy + vxvy)

q
_x22(u

2
x + v2x) + _y22(u

2
y + v2y) + 2 _x2 _y2(uxuy + vxvy)

We can see that if all derivatives of u and v are zero at a given point, the angle at this point is not de�ned.
Now, we will show that if u and v satisfy the Cauchy-Riemann conditions, then the new angle �0 is the
same as the angle � in the domain of F . It can be in fact shown that the implication works the other way
as well (i.e. that the requirement that these angles are equal leads to Cauchy-Riemann conditions on u and
v), but it is harder to do (and was not presented in lectures).
The Cauchy-Riemann conditions in this index notation become ux = vy and uy = �vx. Immediately, by
the multiplication of these equations, we can determine that uxuy = �vxvy. Furhermore, by taking square
and adding the equations together, u2x + v2x = u2y + v2y. Therefore, the formula for cos�0 substantially
reduces to

cos�0 =
(u2x + v2x)( _x1 _x2 + _y1 _y2)

(u2x + v2x)
p

_x21 + _y21
p

_x22 + _y22
=

_x1 _x2 + _y1 _y2p
( _x21 + _y21)( _x

2
2 + _y22)

= cos�

Hence, we have shown that if the functions u and v satisfy Cauchy-Riemann conditions, the mapping F is
conformal.

2.4.1 Complex Representation of Conformal Mappings

Since conformal mappings satisfy Cauchy-Riemann conditions, we can express them as a fully complex
functions, taking the points in complex plane to other points in complex plane, where the mapping is a
holomorphic function. Let f(z) be a holomorphic function, representing our mapping, 1 and 2 our paths
in the complex plane, parametrized by z1(t) and z2(t). The paths in the image are w1 and w2, and satisfy

i 2 f1; 2g : wi(t) = f(z(t))

14
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The tangent vector to a path in a complex plane can be represented by a single complex number, analogously
with de�nition in real plane, as

si =
dzi
dt

If the paths intersect at t0, the angle under which they intersect is

� = Arg

�
dz2
dt

�
�Arg

�
dz1
dt

�
= Arg

 
dz2
dt
dz1
dt

!

evaluated at t0 (from now on, implied).
In the image of f , the angle of intersection is

�0 = Arg

�
dw2

dt

�
�Arg

�
dw1

dt

�
= Arg

 
dw2

dt
dw1

dt

!

where
dwi

dt
=

@f

@z

dzi
dt

Hence, we clearly see that

�0 = Arg

 
@f
@z

dz2
dt

@f
@z

dz1
dt

!
= Arg

 
dz2
dt
dz1
dt

!
= �

It may seem like we did not need f to be holomorphic, but we used the holomorphicity of f when we stated
that the derivatives of f at f(z(t0)) are the same for following path 01 and 02. Hence, the mapping in
between complex planes mediated by a holomorphic function is always conformal.
However, we should note that if @f

@z
= 0, the angle in the image is unde�ned - hence the mapping is not

conformal at these points. This is the more precise reformulation of the requirement that "all ux, uy, vx
and vy are non-zero" from original derivation of conformal mappings.

2.4.2 Conformal Mappings of Solutions of Laplace's Equations

Since the conformal mappings correspond to holomorphic functions in complex plane and solutions of
Laplace's equations are all holomorphic functions in complex plane, we can transform solutions of Laplace's
equation on certain domain to solutions on other domain via the conformal mappings, since the holomorphic
function of a holomorphic function is still a holomorphic function.
To present an example of this, consider a square region in real plane, 0 � x � a and 0 � y � a for some
real a. In complex plane, this region is a square along the diagonal from z = 0 to z = a + ai. We might
have a solution of Laplace's equation in this region, satisfying certain boundary conditions on the edges of
the square. For example, for solution vanishing on the horizontal boundaries (boundaries parallel with x
axis), we could have solution

f(x; y) = ekx sin(ky)

where k = �
a
. It is important to note that generally, we might be doing some non-linear transformation

map, and in such case, we should really map the dimensionless variables x and y such that kx ! x and
ky ! y. After the transformation, we can substitute back the dimensionality.
The complex function representing this solution in the complex plain in terms of dimensionless variables
will be

F (z) = ez = ex+iy

with f being the imaginary part of F .
Now, consider applying general linear conformal map z ! �(z) = �z + �, where � and � are complex
numbers. The inverse transformation is z = ���

�
, and is de�ned for any � 6= 0, which is also the condition

for �(z) to be conformal in any point on the complex plane.
The bottom boundary of the original domain (square) in complex plane can be parametrized as zb = at; t 2
[0; 1]. Similarly, left boundary is zl = iat, right boundary is zr = a+iat and the top boundary is zt = ia+at.
Hence, the transformed boundaries are

~zb = �(zb) = �zb + � = (�r + i�i)(at) + �r + i�i = �rat+ �r + i(�iat+ �i)

where �r is the real part of � and �i is the imaginary part of �, and similarly for �. In the same spirit

~zl = ��iat+ �r + i(�rat+ �i)
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~zr = �ra� �iat+ �r + i(�rat+ �ia+ �i)

~zt = �rat� �ia+ �r + i(�ra+ �iat+ �i)

This region is depicted in Fig. 2

Figure 2: A conformal mapping of a square of side length 2 by a map � = (2 + 3i)z + i in the complex
plane. The mapped region boundaries are in red.

The solution of the Laplace's equation on this new region with the same boundary conditions will be then

~F (�) = F (�(z)) = e�z+� = e(�r+i�i)(x+iy)+�r+i�i = e�rx��iy+�rei(�ix+�ry+�i) =

= e�rx��iy+�r (cos (�ix+ �ry + �i) + i sin (�ix+ �ry + �i))

Which has imaginary part
~f = e�rx��iy+�r sin (�ix+ �ry + �i)

or converted to dimensional units

~f = e�rkx��iky+�r sin (�ikx+ �rky + �i)

Consider now the � in the radial form, � = j�j(cos(�) + i sin(�)), where � is the argument of �. Then

~f = ej�j(cos(�)kx�sin(�)ky)+�r sin (j�j(sin(�)kx+ cos(�)ky) + �i)

which we can recognize as a combination of rotation, linear scaling and translation. Therefore, any com-
bination of these can be expressed as a linear conformal map in the complex plane. We should note that
pure rotation occurs when � = 0 and j�j = 1, pure scaling occurs when � = 0, i.e. � is real and � = 0, and
pure translation occurs when � = 1 and � 6= 0.

3 Complex Integration

When approaching the integration in complex plane, it is useful to �rst de�ne what we mean by an inte-
gral. In a simpli�ed manner, the integral is related to the anti-derivative F (z) of a function f(z) by the
fundamental theorem of calculus � b

a

f(z)dz = F (b)� F (a)

where f(z) = dF
dz
. However, in complex plane, the path between points a and b is not obvious, as there is

no natural ordering of the complex numbers.
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We can also interpret the integral as a limit of a sum

� b

a

f(z)dz = lim
dzi!0

lim
N!1

NX
n

f(a+

n�1X
j=1

dzj)dzn

This leads to interpretation of the complex integral as sort of a line integral in the complex plane. As for
any line integral, we must specify the path along which to take the integral. In complex calculus, we often
use term contour for the path in complex plane.
Then, we write that for contour �(t) which is parametrized by some real parameter t

�
�

f(z)dz = F (�(tf ))� F (�(ti))

where �(tf ) = zf is the �nal point of the path and �(ti) = zi is the starting point of the path. Most
commonly, we will not try to discover the anti-derivative F , but rather we will try to parametrize � by
some real t, so that we get z = �(t) = z(t) and then we calculate the integral. The reasons for this will
become apparent in the next subsection.
But �rst, we need to prove a useful theorem for complex integration. We are about to prove that����

�
�

f(z)dz

���� �
�
�

jf(z)dzj

To prove this, lets rewrite this in the summation limit������ limdzi!0
lim

N!1

NX
n

f(a+

n�1X
j=1

dzj)dzn

������ � lim
dzi!0

lim
N!1

NX
n

������f(a+
n�1X
j=1

dzj)dzn

������
We can move the absolute value inside the limit on the left hand side. Shortening limdzi!0 limN!1

PN
n f(a+Pn�1

j=1 dzj)dzn () lim we than have

lim

�����
NX
n

an

����� � lim

NX
n

janj

where an = f(a+
Pn�1

j=1 dzj)dzn. But, we can prove that for any �nite set of complex numbers faig�����
X
i

ai

����� �
X
i

jaij

Rewriting ai = rre
i�i in polar coordinates�����

X
i

rie
i�i

����� �
X
i

��riei�i �� =X
i

ri

Taking a square of both sides, since both sides are positive numbers�����
X
i

rie
i�i

�����
2

�
 X

i

ri

!

Using that the absolute value squared of a complex number is the product of the complex number and its
complex conjugate, we can rewrite the left hand side. Also, expanding the square of the sum

 X
i

rie
i�i

!0@X
j

rje
�i�j

1
A �

 X
i

ri

!0@X
j

rj

1
A

Hence, connecting the sums and moving everything to the right hand side, we have

0 �
X
i

X
j

rirj

�
1� ei(�i��j)

�
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We can see that when i = j, ei(�i��j) = e0 = 1, and therefore 1� ei(�i��j) = 0 and these terms dissappear
from the summations. Furthermore, we can see that for every i = k and j = l pair, there exists i = l
and j = k pair. Since the exponent is antisymmetric with exchange i () j and the r multiplication is
symmetric, we can rewrite the sums to sum over without double counting, i.e.

0 �
X
i

X
j>i

rirj(1� ei(�i��j)) + rjri(1� ei(�j��i)) =

=
X
i

X
j>i

2rirj

�
1� ei(�i��j) � e�i(�i��j)

2

�
=
X
i

X
j

2rirj(1� cos(�i � �j))

But since ri > 0, rj > 0 and (1� cos(�i� �j)) � 0, the whole expression is greater than zero, which is what
we wanted to show.
Hence, taking the limit of the sum, we have our theorem,����

�
�

f(z)dz

���� �
�
�

jf(z)dzj (10)

3.1 Parametrization of Complex Integral

Since we integrate along a certain contour � in the complex plane, we can parametrize the points z 2 �
as z = z(t) where t is some real number, taken from a certain interval in certain order. For example,
a straight line in a complex plane from 0 to 1 + i could be parametrized as z = (1 + i)t where t runs
from 0 to 1. Importantly, the order of the parametrization generally matters, so we must be careful about
orientations/minus signs etc.
But, the existence of contour � does not really depend on the form of the parametrization. For example,
we could have just as well chosen z = (1 + i)t2 for the previous exercise, and the same path would have
been covered. Does the complex integral change when we use di�erent parametrizations?
Suppose we have two parametrizations of z along �, z = w(t) and z = v(q), where q and t are the real
parameters, running from t0 and q0 to t1 and q1, respectively. The integral of some function f(z) in
parametrization w becomes �

�

f(z)dz =

� t1

t0

f(w(t))
dw

dt
dt

Suppose now that there exists a function that maps the interval of t onto the interval of q, � : [t0; t1] !
[q0; q1], that creates one-to-one correspondence. If it does not create one-to-one correspondence, than some
parts of the path in the complex plane might not be covered, or might be covered multiple times.
Then, we can write � t1

t0

f(v(�(t)))
dv(�(t))

dt
dt =

� t1

t0

f(v(�(t)))
dv

d�

d�

dt
dt

We can than change variables to � � �(t1)

�(t0)

f(v(�))
dv

d�
d�

And since � here become the dummy variable, and �(t0) = q0 and �(t1) = q1, by substituting �(t) = v,we
have reached to the conclusion that� t1

t0

f(w(t))
dw

dt
dt =

� q1

q0

f(v(q))
dv

dq
dq

Hence any two parametrizations between the intervals of which there is a one-to-one correspondence lead
to the same value of the complex integral. Therefore, the choice of the parametrization is arbitrary, and
we should always try to search for the most convenient one.
We should also note that by parametrization of the integral, we e�ectively changed the complex integral
into a vector integral in the complex plane. This means that common theorems of real integrals apply,
namely linearity �

�

(�f(z) + �g(z))dz = �

�
�

f(z)dz + �

�
�

g(z)dz

, and opposite direction of integration produces� t1

t0

f(w(t))
dw

dt
dt = �

� t0

t1

f(w(t))
dw

dt
dt

Also, the Green's theorem in plane applies to complex integrals, with interesting consequences.
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3.2 Cauchy's Integral Theorem

Since the complex integral is essentially integral along a line in a complex plane, we can use Green's theorem
in plane (2D Stokes' theorem) to determine more about the integral, without specifying the function f .

Green's theorem states that for a vector �eld ~f(x; y) = u(x; y)̂i + v(x; y)ĵ, the integral along a closed line
in the x; y plane in the anti-clockwise direction leads to

�
@S

~f � dl̂ =
�
@S

udx+ vdy =

�
S

�
@v

@x
� @u

y

�
dS

where @S is the closed boundary of simple connected area S, dl̂ is the vector element along this boundary
and dS is the element of the area. If the direction is clockwise, the signs on the result are changed.
Our complex integral can be then rewritten as (using @S instead of �)

I =

�
@S

f(z)dz =

�
@S

(u+ iv)(dx+ idy) =

�
@S

(udx� vdy) + i(udy + vdx) =

=

�
@S

(udx� vdy) + i

�
@S

(udy + vdx)

These are both real integrals, and therefore, we can apply the Green's theorem in plane, as stated above.

I =

�
S

�
@(�v)
@x

� @u

@y

�
dS + i

�
S

�
@u

@x
� @v

@y

�
dS

But, comparing this to the Cauchy-Riemann conditions, we obtain that IF the function is analytical every-
where across the region S (i.e. Cauchy-Riemann conditions apply at every point of S), then

I =

�
S

�
�@v

@x
�
�
�@v

@x

��
dS + i

�
S

�
@u

@x
� @u

@x

�
dS = 0

Therefore, we have arrived at Cauchy's integral theorem, which states that for a function f analytical across
the simply connected region S �

@S

f(z)dz = 0 (11)

Important condition for this integrar equation to apply is the analyticity of the f everywhere across the
region S and the fact that S has to be simply connected. If either of these conditions is not satis�ed, then
the theorem does not apply

3.2.1 Integral of 1/z

Consider now a speci�c integral for f(z) = 1
z�z0

along a contour � that encloses point z0, where f is not
de�ned. Besides this point, f is always analytical.
We can separate the integral into three integrals, as shown in Fig. 3
Hence �

�

f(z)dz =

�
�1

f(z)dz +

�
�2

f(z)dz +

�
�3

f(z)dz

Since �1 and �2 are closed contours and f is analytical at every point closed by �1 and �2 respectively, the
integrals along these contours go to zero. Hence, we are left with

�
�

f(z)dz =

�
�3

f(z)dz

Parametrizing z = z0 +Rei�, where R is the radius of the circle �3 and � runs from 0 to 2�, we have

� 2�

0

1

z0 +Rei� � z0
Riei�d� =

� 2�

0

iRei�

Rei�
d� = i

� 2�

0

d� = 2�i

Hence �
�

1

z � z0
dz = 2�i (12)

This is not zero, which is contributed to the fact that f is not analytical within �3. Note that, if we carried
out the integral in opposite (clockwise) direction, we would obtain simply �2�i.
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Figure 3: A general contour around point z0 is separated into a circle �3, centered on z0, and two other
closed contours, �1 and �2. In the limit when the separation between these contours goes to zero, the sum
of the integral along these contours is the integral over the big contour �, in this �gure represented by the
big ellipse.

3.2.2 Relation to Primitive Functions

The previous result might look fairly obscure given the fundamental theorem of calculus, which states that

� b

a

f(z)dz = F (b)� F (a)

Hence, for the same starting and ending point, this seems like it should be always zero, not just in the case
of analytical functions. The complication here is the somewhat non-uniqueness of some primitive functions
in complex plane. For the discussed example of f(z) = 1

z�z0
, the primitive function is natural logarithm

in the complex plane, which is not uniquely de�ned - consider number z = rei�. Same number is clearly
represented even by z = rei(�+2n�) where n is natural number, as ei� is periodic in � with period length
2�. Now, taking logarithm of z

r

log
�z
r

�
= log

�
ei�
�
= i� = log

�
ei(�+2�)

�
= i� + 2n�i

We therefore see that the logarithm is de�ned up to a constant addition of 2n�i. We than say that the
logarithm function has branches/is not single valued. We can then see that the integral over a closed
contour corresponds to the di�erence of the primitive functions after travelling along this closed contour.
For the logarithm, after travelling one circle, we e�ectively added 2� to the angle �, and hence

log
�
rei(�+2�)

�
� log

�
rei�

�
= i� + 2�i� i� = 2�i

, which is what we have found before.

3.3 Cauchy's Integral Formula

Important result follows from the integral of frac1z � z0. Starting from the equation for evaluation of this
integral �

�

1

z � z0
dz = 2�i

we can multiply both sides by value of some analytical single valued function f (analytical across region
enclosed by �) at point z0

f(z0)

�
�

1

z � z0
dz = 2�if(z0)
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�
�

f(z0)

z � z0
dz = 2�if(z0)

2�if(z0) =

�
�

f(z0) + f(z)� f(z)

z � z0
dz =

�
�

f(z)

z � z0
dz �

�
�

f(z)� f(z0)

z � z0
dz

Since f(z) is analytical across region bounded by �, f(z)�f(z0)
z�z0

dz is also analytical everywhere except for
the point z0. Therefore, we can divide the second integral exactly as in Fig. 3. The radius of the circle can
be arbitrary, so we can choose a very small radius, e�ectively setting taking the limit z ! z0. But, we can
notice that the integrand of the second integral has a form of derivative. Therefore, for a very small circle

�
�

f(z)� f(z0)

z � z0
dz =

�
�3

lim
z!z0

f(z)� f(z0)

z � z0
dz =

�
�3

f 0(z)dz

But, since f is single valued, the integral from some starting point a

�
�3

f 0(z)dz = f(a)� f(a) = 0

Therefore, we are left with

2�if(z0) =

�
�

f(z)

z � z0
dz

Now, consider taking the n-th derivative with respect to z0 of both sides. Then

2�i
dnf(z0)

dzn0
=

dn

dzn0

�
�

f(z)

z � z0
dz

Since we are integrating with respect to z, not z0, and since we the variable in the derivative is a dummy
variable, we can rewrite this as

2�i
dnf

dzn

���
z0

=

�
�

dn

dzn0

�
f(z)

z � z0

�
dz =

�
�

dn�1

dzn�1

�
f(z)

(z � z0)2

�
dz =

=

�
�

dn�2

dzn�2

�
2f(z)

(z � z0)3

�
dz = ::: =

�
�

n!f(z)

(z � z0)n+1
dz = n!

�
�

f(z)

(z � z0)n+1
dz

Hence, we have �
�

f(z)

(z � z0)n+1
=

2�i

n!

dnf

dzn

���
z0

(13)

This is the Cauchy integral formula, a major result of calculus of complex functions.

3.3.1 Self Consistency with Taylor Series

Suppose that we expand f(z) in proximity of z0 into Taylor series

f(z) = a0 + a1(z � z0) + a2(z � z0)
2 + :::

where aj are the constant Taylor coe�cients. Substituting this into the integral in Cauchy integral formula
leads to �

�

a0 + a1(z � z0) + a2(z � z0)
2

(z � z0)n+1
dz =

�
�

0
@ 1X

j=0

aj
(z � z0)n+1�j

1
A dz =

=

�
�

0
@ nX

j=0

aj
(z � z0)n+1�j

1
A dz +

�
�

0
@ 1X
j=n+1

an(z � z0)
j�n�1

1
A dz

The integrand in the second integral is a polynomial, which is analytical everywhere, and therefore the
integral goes to zero. The �rst integral can be rewritten as sum of integrals

�
�

 
nX
i=0

aj
(z � z0)n+1�j

!
dz =

nX
j=0

�
�

aj
(z � z0)n+1�j

dz

21



PX440 - Mathematical Methods for Physicists III Formulae derivation

Each of these integrals is equivalent to the integral along a circle centered on z0, as shown before in Fig. 3.
Parametrizing z = z0 + rei�, this becomes

nX
j=0

� 2�

0

aj
rn+1�jei(n+1�j)�

riei�d� =

nX
j=0

iaj
rn�j

� 2�

0

e�i(n�j)�d� =

=

n�1X
j=0

iaj
rn�j

� �1
i(n� j)

e�i(n�j)�
�2�
0

+ 2�ian

where �n0 is the Kronecker delta (at j = n, the integral evaluates to 2�) But since ei� is periodic in � with
period 2� and n � j is a natural number, the terms in square brackets evaluate to zero. We are then left
with �

�

f(z)

(z � z0)n+1
dz = 2�ian

From the Taylor series, we know that an = 1
n!

dnf
dzn

���
z0
, and thus we have shown that

�
�

f(z)

(z � z0)n+1
dz = 2�ian =

2�i

n!

dnf

dzn

���
z0

which is consistent with our previous result.

3.3.2 Cauchy's bound on function derivatives

Consider now � to be a circle of radius R centered on z0. The absolute value of the nth derivative of
function f can be estimated from Cauchy's integral formula����dnfdzn

���
z0

���� =
���� n!2�i

�
�

f(z)

(z � z0)n+1
dz

���� = n!

2�

����
�
�

f(z)

(z � z0)n+1
dz

����
Using (10) ����dnfdzn

���
z0

���� � n!

2�

�
�

jf(z)j
jz � z0jn+1 jdzj

Since � is a circle of radius R centered on z0, we can parametrize z = z0 +Rei�, and thus jz� z0j = R and
jdzj = Rd� ����dnfdzn

���
z0

���� � n!

2�

�
�

jf(Rei�)j
Rn+1

Rd� � n!

2�

�
�

max�jf(Rei�)j
Rn

d�

where max�jf(Rei�)j is the maximum value of jf(Rei�)j along � (for � from 0 to 2�). Since this is only
some number, we can assign M = max�jf(Rei�)j and thus����dnfdzn

���
z0

���� � n!M

2�Rn

� 2�

0

d�

����dnfdzn

���
z0

���� � n!M

Rn

Hence, if function f(z) is bounded along the path �, so are all of its derivatives.

3.3.3 Liouville's Theorem

By taking a special case of function f analytic over entire complex plane (called an entire function) that is
also bounded as we move R!1, we have

8n > 0 :

����dnfdzn

���
z0

���� � 0

But this means that all the derivatives of f are zero, hence the only bounded entire function is a constant
function.
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3.4 Series Expansions of Complex Functions

We have seen that for closed contour integral of a function, only terms of form 1
z�z0

contribute to the value
of the integral. It is therefore desirable to devise a way how to expand a complex function into series of
terms of this form. Two ways of doing this are discussed - the geometrical series and Laurent series.

3.4.1 Geometrical Series

Geometrical series formula dictates that for z : jzj < 1

1X
j=0

zj =
1

1� z

This enables are to determine the series expansion of any function of type 1
1�z . But, the expansion is only

valid for jzj < 1.
Consider, for example, a function f(z) = 1

(z�2)(z�3i) can be expanded as

f =
1

(z � 2)(z � 3i)
=

1
2�3i

z � 2
�

1
2�3i

z � 3i
=

1

2� 3i

�
1

3i

1

1� z
3i

� 1

2

1

1� z
2

�

For jzj < 2, jz=2j < 1 and jz=(3i)j < 1, hence both fractions can be expanded

f =
1

2� 3i

0
@ 1

3i

1X
j=0

� z
3i

�j
� 1

2

1X
j=0

�z
2

�i1A
It should be noted that we can obtain the series expansion even outside the classical region of convergence.
In this region, jzj > 1, but 1=jzj < 1, hence we could write.

f =
1

1� z
=

1

z

1
1
z
� 1

=
�1
z

1

1� 1
z

=
�1
z

1X
j=0

1

zj
=
�1
z

1X
j=0

z�j

We now see that we are summing over negative powers of j. This concept can be generalized in new
alternative to Taylor series for complex numbers, called Laurent series.

3.4.2 Laurent Series

We would like to capture the behaviour of a function in a series expansion similar to Taylor series. But, since
the only values contributing to contour integrals are from the divergent/non-analytic parts of otherwise
analytical functions, we would like to somehow preserve the information about the non-analycity in the
series. The Laurent series are a natural way of doing this, by including the negative powers in Taylor
expansion, so that a function f can be expanded around some z0 as

f =

1X
j=0

aj(z � z0)
j +

1X
j=1

a�j(z � z0)
�j =

1X
j=�1

aj(z � z0)
j

To �nd out coe�cients aj , we must however use a slightly di�erent approach than for Taylor series. In this
case, we will only consider the case when the minimum value j can take is �m, where m is some positive
integer. Then, we say that the function f has pole of order m at z0. Consider then multiplying the function
f by (z � z0)

m.

f(z)(z � z0)
m =

1X
j=�m

aj(z � z0)
j(z � z0)

m =

1X
j=�m

aj(z � z0)
j+m =

1X
j=0

aj�m(z � z0)
j

This is the classical description of Taylor series, and we can therefore use formula for Taylor series elements
to obtain coe�cients aj�m

aj�m = lim
z!z0

1

j!

dj

dzj
(f(z)(z � z0)

m)
���
z=0

(14)

For this formula to work, it is important that m is truly the highest order of poles of f at z0. As an
example, consider expansion of f(z) = 1

sin(z) around 0. To �nd the order of the pole of f at 0, try taking a
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limit of f(z)(z� 0)j with progressively increasing j. For j < m, the limit will diverge (as there will be still
some 1

(z�0)m�j left in leading pole term). For j = m, there will be some �nite value of the limit, equal to

a�m. For j > m, the limit will go to zero (as there will be some extra (z� z0)
j �m). So, �rst we try j = 1.

lim
z!0

1

sin z
(z � 0) = lim

z!0

z

sin z
= lim z ! 0

1

cos z
= 1

where we used L'Hopitals rule (if both numerator and denominator approach zero in the limit, the value of
the limit is equal to the limit of the ratio of the derivatives of numerator and denominator, respectively),
which was introduced in the �rst year. Hence we have a �nite value, suggesting that the pole at 0 will be
of order 1. We can quickly check that second order term goes to zero, i.e.

lim
z!0

1

sin z
(z � 0)2 = lim

z!0

z2

sin z
= lim

z!0

2z

cos z
= 0

Hence, we can write that around 0

1

sin z
=

1X
j=�1

aj(z � 0)j =
X
j=0

(z)j�1 lim
z!z0

1

j!

dj

dzj

� z

sin z

� ���
z=0

Inversly to the poles, we could say that a function G(z) has a zero of order m at z0, if all derivatives up to
m-th derivative at z0 are zero. In this case

1

G(z)
=

1Pm
j=0 aj(z � z0)j

has pole of order m.

3.4.3 Convergence of Laurent Series

For Laurent series to converge successfully, we need that z0 is an isolated singularity, i.e. we are able to
draw a circle of some �nite, even though perhaps small radius around the singularity such that all points
on the circle are points where f does not diverge.

3.5 Calculus of Residues

Consider now a function f(z) expandable as a Laurent series that has a pole of order m around z0, so that

f(z) =

1X
j=0

aj�m(z � z0)
j�m

Consider now taking a closed contour integral around circle centered on z0. The value of the integral is
(using Cauchy's integral formula)

�
�

f(z)dz =

�
�

0
@ 1X

j=0

aj�m(z � z0)
j�m

1
A dz =

1X
j=0

�
�

aj�m
(z � z0)m�j

dz =

=

mX
j=0

2�i

(m� j)!

dm�j�1

dzm�j�1
aj�m

where terms for j > m dissappear as m � j < 0 and the integrals become integrals of polynomials, which
always go to zero, as polynomials are entire functions. Furthermore, since aj�m coe�cients are constants,
their derivatives are zero as well. Hence, we are left with only one term, when we are not taking the
derivative of the coe�cients, which corresponds to m� j � 1 = 0 or j = m� 1. Hence

�
�

f(z)dz =
2�i

(m� (m� 1))!
am�1�m = 2�ia�1 (15)

Hence, the whole complex integral can be in fact solved by looking at a single component of the Laurent
series expansion of the function f(z). This single component a�1 is given a speci�c name to highlight its
importance - its called the residue of function f(z) at z0, and we write

Res[f(z); z0] = a�1
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For functions with �nite pole order, the complex integration then becomes exercise in complex di�erentia-
tion, which is generally much easier to acomplish.
One more generalization is possible by considering a case when several distinct isolated poles are present
inside the area enclosed by �. Then, we can use similar approach as illustrated in Fig. 3 to isolate each
singularity into a small circle around it. Let there be n of these circles, indexed by j so that we can call
these circles �j and the poles zj . Then, the integral over � of f(z) becomes

�
�

f(z)dz =

nX
j=1

�
�j

f(z)dz = 2�i

nX
j=1

Res[f(z); zj ]

Therefore, we have Cauchy's residue theorem

�
�

f(z)dz = 2�i

nX
j=1

Res[f(z); zj ] (16)

This is pretty much the intellectual peak of the course. In the remaining sections, we discuss some speci�c
applications of the Cauchy's residue theorem.
Remember that for this to work as written, the contour integration has to be carried out in the positive
(anti-clockwise) direction, otherwise the expression on the right has the opposite sign.

3.5.1 Simple pole functions

Consider a function of type f(z) = P (z)
Q(z) , where Q(z) has a �rst order zero at z0 (a simple zero) and

P (z0) 6= 0, so that f(z) has a �rst order pole (a simple pole) at z0. The residue of the function at z0 is

Res

�
P (z)

Q(z)
; z0

�
=

1

0!
lim
z!z0

P (z)

Q(z)
(z � z0)

where I used (14) for a�1 with m = 1 (a simple pole) and j = 0. Since Q(z0) = 0 by our de�nition, we can
subtract it in the denominator, which leads to

Res

�
P (z)

Q(z)
; z0

�
= lim

z!z0

P (z)

Q(z)�Q(z0)
(z � z0) = lim

z!z0

P (z)
Q(z)�Q(z0)

z�z0

=
P (z0)

Q0(z0)

where Q0(z) is the �rst derivative of Q with respect to z. This is a useful simpli�cation for some residue
calculations.

3.5.2 Harmonic Integrals

Consider a rational function of sines and cosines R(cos �; sin �) in a real integral

I =

� 2�

0

R(cos �; sin �)d�

We can view this integral as a contour integral in the complex plane along the unit circle. Parametrizing

z = ei�, so that cos � = 1
2

�
z + 1

z

�
, sin � = 1

2i

�
z
�

1
z

�
and d� = �i 1

z
dz. Hence, the integral becomes

I = �i
�
unit circle

R
�
1
2

�
z + 1

z

�
; 1
2i

�
z
�

1
z

��
z

dz

The integrand is a analytical function everywhere except at z = 0 and at the poles ofR
�
1
2

�
z + 1

z

�
; 1
2i

�
z
�

1
z

��
.

Therefore, we can apply Cauchy's residue theorem to calculate this integral easily.

3.5.3 Inverse square integrals

Consider integral of form

I =

� 1

�1

f(x)

x2 + a2
dx
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where f(x) is some function which grows as it approaches in�nity slower than 1
x
and a is some real number.

This integral can be interpreted as

I = lim
R!1

� R

�R

f(x)

x2 + a2
dx

We can try to convert the inner integral into the closed contour integral by closing the contour by a half-
circle in one of the half planes of complex plane. This half circle will have radius R and will go from z = R
to z = �R through, for the sake of correct orientation of the contour, z = iR. This will however introduce
extra part to the integral, the part when we travel along the half circle �c. Hence, we can write that for
the whole closed contour �

�
�

f(z)

z2 + a2
dz =

� R

�R

f(z)

z2 + a2
dz +

�
�c

f(z)

z2 + a2
dz

But, we can estimate the value of the second integral as����
�
�c

f(z)

z2 + a2
dz

���� �
�
�c

jf(z)jjdzj
jz2 + a2j =

� �

0

jf(Rei�)jRd�
jR2e2i� + a2j =

� �

0

jf(Rei�)jRd�
j(Rei� + ia)(Rei� � ia)j

In the limit of R ! 1, the integrand tends to f(Rei�)
R

, which, if f grows slower than z at all points as z
goes to in�nity, tends to zero. Therefore, this part of the integral as a whole tends to zero, and we have

I =

�
�

f(z)

z2 + a2
dz

and we can use Cauchy's residue theorem and count the residues in the upper plane, which there is one of
(either at ia or at �ia).
I will end the discussion of the applied integrals here. Of course, there are many types of integrals we could
furher discover to be solvable by calculus of residues, but I refer the readers to the examples problems,
where there were many problems of this nature solved.
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