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Chapter 0

Motivation and Introduction

This module aims to study a branch of physics known as Kinetic Theory, i.e. how to under-
stand large systems of (mostly) indistinguishable particles. It is important to recall equations
and ideas you may have encountered from other modules.

This document is a revision guide which aims to make the module clearer when revising.
It closely follows the notation, content and order of the lecture notes for the year 2023/24
for this module. It also takes into account content mentioned in live lectures that isn’t in
the notes. This should hopefully make these notes a more comprehensive revision tool.

If there are any issues please email physsocacademics@gmail.com, with a screenshot of
the issue and its location in the document.

0.1 Notation

0.1.1 Vectors

All vectors are denoted with an arrow → above the symbol like so: p⃗ = (p1, p2, . . . , pn)
means the vector quantity of momentum, and we define the corresponding no-arrowed, no
sub/superscripted symbol to be its magnitude in the Rn norm, i.e.

p = |p⃗| =

(
n∑

i=1

p2i

)1/2

,

in contrast to other notes which may use a boldface.

0.1.2 Index notation

This module uses index notation, that is the stuff you might have seen in PX3A3 Electro-
dynamics and PX3A5 The Standard Model that looks like xµxµ. In general, the position of
the µ does matter and denotes the index of a 4-vector, but for this module, the position does
not matter and we will generally be using subscripts, i.e. xµ.

There is also some use of the Einstein Summation Convention, where
∑

are explicit
running indices are all dropped. Therefore the dot product of 2 vectors x⃗, p⃗ can be written
as xipi =

∑n
i=1 xipi.

5
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6 CHAPTER 0. MOTIVATION AND INTRODUCTION

0.1.3 Quick review

Equation of Continuity. PX285 Hamiltonian and Fluid Mechanics. Also known
as the Continuity Equation, it describes conservation of mass, or of some flux. Consider
some closed volume Ω immersed in a flux density j⃗. Let J(t) denote the amount of stuff
(flux) in Ω at time t. The amount of stuff exiting the boundary (∂Ω), satisfies

dJ

dt
+ ∇⃗ · j⃗ = 0. (1)

This means that the quantity J is conserved.

The Hamiltonian. PX285 Hamiltonian and Fluid Mechanics. We denote the
Hamiltonian as curly H: H. In classical mechanics, this is defined as

H = T (p⃗) + Φ(r⃗) (2)

where p⃗ is the momentum of one particle, and r⃗ is its position. T is the classical kinetic
energy p2/2m and Φ is some potential. This is the single-particle Hamiltonian which is
usually denoted as H(1)(i) for the ith particle (just subscript every quantity with i). This
extends to two particles etc.

0.2 Tensors
Definition 0.2.1. An nth rank tensor is a mathematical object with n independent in-
dices.

For example Xµ is a first rank tensor because all its information can be accessed with
1 independent index µ. These are sometimes called vectors and denoted X⃗. Scalars are
zero-rank tensors. F µν (the Faraday tensor from PX3A3) is a second-rank tensor.

0.2.1 Vector and tensor operations

This module is fairly maths heavy and involves a fair amount of switching between index
notation and vector notation. The index notation should be easier to understand - it specifies
the maths of one component, which you repeat for all other components. Vector notation
can be however, complicated.

Definition 0.2.2. Let u⃗ ∈ Rm, v⃗ ∈ Rn. Then their outer product is defined by

u⃗⊗ v⃗ = A =


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
... . . . ...

umv1 umv2 . . . umvn

 = Aij

i.e. we have a binary operation ⊗ : Rm × Rn → Rmn
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Furthermore, the outer product is associative.
In this case, matrices and second-rank tensors are the same thing. These aren’t strictly

the same across all maths and physics (i.e., relativity), but for this module we will take it to
be.

Another thing to ask if: let u : Rn → R be a scalar-valued function and u : Rn → Rn a
vector-valued function. What is the difference between:

∇⃗u vs. ∇⃗u⃗ (3)

We define (∇⃗)T = (∂1, ∂2, . . . , ∂n). The second term is actually a second-rank tensor and
the first expression is a first-rank tensor.

∇⃗u =


∂1u
∂2u
...

∂nu

 vs. ∇⃗u⃗ = ∇⃗ ⊗ u⃗ =


∂1u1 ∂1u2 . . . ∂1un
∂2u1 ∂2u2 . . . ∂2un

...
... . . . ...

∂nu1 ∂nu2 . . . ∂nun

 (4)

Since we generally dealing with everything as vectors, we use the second form the most. It
will be the case in this module that ‘multiplication’ of vectors (written as x⃗x⃗) is implied to
be the outer product (x⃗x⃗ := x⃗⊗ x⃗) and the dot and cross products will be written explicitly.
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Chapter 1

Equation of Continuity, Phase Space and
Liouville’s theorem

1.1 Equation of Continuity
We know the regular continuity equation for a conserved quantity in (1). If we have a source
or sink term, the right-hand-side may be non-zero, and equal to some function Q(t, x⃗) which
is the amount of J generated per unit volume per unit time. Being more explicit:

dJ

dt
+ ∇⃗ · j⃗ = Q(t, x⃗) (1.1)

However, let us stick with the conserved version (1).

1.2 Phase Space
Consider a system of N interacting particles in 3 spatial dimensions with position and mo-
menta (r⃗i, p⃗i) = (ri,1, ri,2, ri,3, pi,1, pi,2, pi,3).

Definition 1.2.1. Phase space is the 6N−dimensional manifold which contains all possible
configurations of position and momenta for a system.

This definition need not be memorised, nor is it exact1. It is also not necessary to know
what a manifold is.

Definition 1.2.2. The evolution of a system can be described by a set of phase-space
trajectories, which are lines through phase space.

The motivation to use these definitions is that we can recast all classical mechanics
systems strictly in terms of position and momenta. As such, we may study them using
Hamiltonian mechanics.

Furthermore, we wish to have a statistical description of our phase spaces, much like in
previous modules covering statistical mechanics (PX3A7 Statistical Physics, PX284 Statis-
tical Mechanics, Electromagnetic Theory and Optics) where we have worked with statistical
distributions of particles. This motivates the following definition:

1In classical mechanics, it is a symplectic manifold

9
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Definition 1.2.3. The N-particle distribution function FN for our system ofN particles
is

FN(r⃗1, p⃗1, . . . , r⃗N , p⃗N , t) := FN(r⃗
N , p⃗N , t) (1.2)

This is a probability distribution function which gives the probability of the system to
be in state (r⃗i, p⃗i) = (ri,1, ri,2, ri,3, pi,1, pi,2, pi,3) for every particle i.

If we have a probability distribution, it must satisfy a normalisation condition.

Lemma 1.2.1. Normalisation condition for FN is:∫ ∫
FN(r⃗

N , p⃗N , t)dr⃗Ndp⃗N = 1 (1.3)

where we integrate over all position and momentum degree of freedoms.
This integral is the equivalent of saying it is guaranteed for the system to reach every

position and momentum it needs to (it might not reach every possible value of momentum
and position however).

Most of the rest of this module depends on this function in some way.

1.3 Liouville Equation and Theorem
Equivalent definitions of Liouville’s Theorem (the physics-y ones anyways)

• Hamiltonian dynamics conserves phase space volume.

• Phase space is incompressible under Hamiltonian flow.

• The phase space distribution function is constant along Hamiltonian trajectories

We will soon construct and prove Liouville’s theorem.
As mentioned before, the definitions of phase space motivate the use of Hamilton’s equa-

tions2 which are

dpµ
dt

= − ∂H
∂rµ

∣∣∣∣
pα

drµ
dt

=
∂H
∂pµ

∣∣∣∣
rα

(1.4)

where the Hamiltonian is a function of all particles, using the same notation for FN :

H = H(r⃗N , p⃗N , t) = T (p⃗N) + Φ(r⃗N)

where again T is the total classical kinetic energy and Φ is the total potential energy which
depends only on particle positions. We will shortly return to the usefulness of the Hamiltonian
in this context.

Definition 1.3.1. A phase-space position is an element of phase space. This is denoted
by the 2-tuple (r⃗, p⃗) (or (r⃗N , p⃗N) for our N particle system).

2PX285 Hamiltonian and Fluid Mechanics
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We will refer to this as simply ‘position’ when it is clear from context.

Definition 1.3.2. A phase-space velocity is the total time derivative of position in phase
space. This is denoted by the 2-tuple ( ˙⃗r, ˙⃗p) (or ( ˙⃗rN , ˙⃗pN) for our N particle system).

We will refer to this as simply ‘velocity’ when it is clear from context.
Now if we have phase-space velocity and we have trajectories, each position is like a posi-

tion vector. The velocity vectors are always tangential to a phase-space trajectory at a fixed
time t. This has the analogue to a fluid: fluid velocity vectors are tangential to streamlines,
and streamlines describe the trajectory of a fluid particle (in the Eulerian picture). What
we have is effectively a fluid!

Lemma 1.3.1. The fluid (aka Hamiltonian) flow in phase space is divergence-free or
incompressible.

Proof. Remember that a fluid flow is incompressible if the divergence of the velocity, ∇⃗·u⃗ = 0.
Here, our velocity is the phase-space velocity. We substitute for phase-space velocity directly:

∇⃗ ·
(
˙⃗rN , ˙⃗pN

)
=
∂ṙµ
∂rµ

+
∂ṗµ
∂pµ

=
∂2H

∂rµ ∂pµ
− ∂2H
∂pµ ∂rµ

= 0

where in the last step we use commutativity of second-order partial derivatives to instantly
equate it to 0.

Remark. Note the summation convention. We do this over each component of position and
velocity.

Remark. Observe this is one of the formulations of Liouville’s theorem.

We can actually go and derive Liouville’s equation with this, which is a key result to
remember

Theorem 1.3.2. Liouville’s Equation

∂FN

∂t
+ ṙµ

∂FN

∂rµ
+ ṗµ

∂FN

∂pµ
= 0 (1.5)

Proof. The probability is conserved and so obeys a continuity equation

∂FN

∂t
+ ∇⃗ · [FN (ṙµ, ṗµ)] = 0

Using the product rule on the derivative and using Lemma 1.3.1 we arrive at

∂FN

∂t
+ (ṙµ, ṗµ) · ∇⃗FN = 0

Note that
∇⃗FN =

(
∂FN

∂rµ
,
∂FN

∂pµ

)
(1.6)

So expanding the dot product above, we have

∂FN

∂t
+ (ṙµ, ṗµ) ·

(
∂FN

∂rµ
,
∂FN

∂pµ

)
= 0

which directly gives us Liouville’s equation
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This leads us directly to

Theorem 1.3.3. Liouville’s Theorem: the probability following a phase-space trajectory is
conserved, i.e.

FN(r⃗
N , p⃗N , t) = FN(r⃗

N
0 , p⃗

N
0 , 0) (1.7)

where the RHS is the probability density at the initial time t = 0.

Proof. The previous Theorem 1.3.2 tells us FN(r⃗
N , p⃗N , t)is conserved. To ensure a well-

posed problem to a classical mechanics problem (i.e. Hamilton’s equations 1.4, we need
initial conditions) which will be specified in terms of momenta and positions. This means
the probability density must be the same as it was specified as the start of the system
evolution.

(NON-EXAMINABLE) Mathematically, the differential phase space volume occupied by
two different elements in phase space are the same. See this LibreText for more information.

1.4 BBGKY Hierarchy
Finding the N -particle density is hard. We want to find the single-particle density, the
probability density that ANY particle has specified position and momentum, independent
of the others (this is kind of like always needing to find the partition function for statistical
mechanics).

Definition 1.4.1. The single-particle density function (SPDF) f(r⃗, p⃗, t) is defined by
the singular contributions:

f(r⃗, p⃗, t) =

∫
FN

(
r⃗N , p⃗N , t

) N∑
i=1

(δ (r⃗i − r⃗) δ (p⃗i − p⃗)) dr⃗Ndp⃗N (1.8)

The δ functions pick out singular contributions from each particle i.
For indistinguishable particles, we can say that the single particle density is N times

the probability density for particle 13

Then f reduces to:

f(r⃗, p⃗, t) = N

∫
FN (r⃗, p⃗, r⃗2, p⃗2 . . . r⃗N , p⃗N , t) dr⃗2dp⃗2 . . . dr⃗Ndp⃗N (1.9)

Now, since f is a probability density, it must obey some normalisation condition, specif-
ically: ∫

f(r⃗, p⃗, t)dp⃗dr⃗ = N (1.10)

Lemma 1.4.1. ∫
f(r⃗, p⃗, t)dp⃗ = n(r⃗) (1.11)

where n(r⃗) is the spatial number density of particles.
3They are indistinguishable, so labelling a particle doesn’t matter, but it simply means we can choose

just any one of them for consideration

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Advanced_Statistical_Mechanics_(Tuckerman)/04%3A_The_canonical_ensemble/4.04%3A_Preservation_of_Phase_Space_Volume_and_Liouville%27s_Theorem
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Now we have f , we want to find its time-evolution like we did for FN . To do this we
make a series of approximations:

• Ignore any 3+ body interactions. Only consider single-particle and pairwise-particle
interactions.

• Treat the 2-body Hamiltonian as an additional perturbation in the potential of the
single-particle Hamiltonian

Let us formalise this. Write

H(r⃗N , p⃗N) =
∑
i

H(1)(i) +
∑
j>i

H(2)(i, j) (1.12)

where H(1)(i) = H(1) (r⃗i, p⃗i) and H(2)(i, j) = H(2)(j, i) = H(2) (r⃗i, p⃗i, r⃗j, p⃗j) and j > i to
avoid double counting. Additionally H(1)(i) = T (p⃗i) + Uext (r⃗i) and H(2) = V (r⃗i − r⃗j).

We will now substitute this into Liouville’s equation (1.3.2).

Theorem 1.4.2. f(r⃗, p⃗) obeys a single-particle Liouville equation, i.e. it satisfies Theo-
rem 1.3.2.

Remark. THIS WAS A QUESTION IN THE PX449 2023 EXAM!

Before we prove the theorem though, we must deal with being able to partially-differentiate
Eq.(1.9). We state without proof:

Lemma 1.4.3. Leibniz integral rule

∂

∂z

∫ b(z)

a(z)

f(x, z)dx =

∫ b(z)

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)∂a

∂z

where the function f here is unrelated to f(r⃗, p⃗, t)

Then we replace z → t and ignore the functions a(z → t), b(z → t) since the original
integral in Eq. (1.9) is over all position and momenta:

∂f(r⃗, p⃗, t)

∂t
= N

∫
∂FN

∂t
dr⃗2dp⃗2 . . . dr⃗Ndp⃗N (1.13)

where the derivative terms are 0 since we assume that position and momenta are time
independent - they are independent degrees of freedom.

Now we return to the proof of Theorem 1.4.2

Proof. First, we rewrite Liouville’s equation in terms of the Hamiltonian using Hamilton’s
equations and remove summation convention:

∂FN

∂t
+
∑
i

(
∂

∂r⃗i
·
(
∂H
∂p⃗i
FN

)
− ∂

∂p⃗i
·
(
∂H
∂r⃗i
FN

))
= 0 (1.14)
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We will substitute Eq. (1.12) into Eq. (1.14).

∂FN

∂t
+
∑
i

(
∂

∂r⃗i
·
(
∂H(1)(i)

∂p⃗i
FN

)
− ∂

∂p⃗i
·
(
∂H(1)(i)

∂r⃗i
FN

))
+
∑
i<j

(
∂

∂r⃗i
·
(
∂H(2)(ij)

∂p⃗i
FN

)
− ∂

∂p⃗i
·
(
∂H(2)(ij)

∂r⃗i
FN

))
= 0

Observe we can find an expression for simply
∂FN

∂t
by rearranging the two series terms

to the other side, and so substitute directly into Eq. (1.13)

∂f(r⃗, p⃗, t)

∂t
= −N

∫ ∑
i

(
∂

∂r⃗i
·
(
∂H(1)(i)

∂p⃗i
FN

)
− ∂

∂p⃗i
·
(
∂H(1)(i)

∂r⃗i
FN

))
+
∑
i<j

(
∂

∂r⃗i
·
(
∂H(2)(ij)

∂p⃗i
FN

)
− ∂

∂p⃗i
·
(
∂H(2)(ij)

∂r⃗i
FN

))
dp⃗2 . . . dr⃗Ndp⃗N

Integrating out all the i ≥ 2 terms we see they are 0. This leaves the following expression:

∂f(r⃗, p⃗)

∂t
+
∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)

+

∫
dr⃗′dp⃗′

 ∂

∂r⃗
·

∂H(2)

(
r⃗, p⃗, r⃗′, p⃗′

)
∂p⃗

f(2)

(
r⃗, p⃗, r⃗′, p⃗′

)
− ∂

∂p⃗
·

∂H(2)

(
r⃗, p⃗, r⃗′, p⃗′

)
∂r⃗

f(2)

(
r⃗, p⃗, r⃗′, p⃗′

) = 0.

Ignoring the H(2) terms. we have

∂f(r⃗, p⃗)

∂t
+
∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)
= 0 (1.15)

This is exactly Liouville’s equation.

Remark. The above expression in terms of f(r⃗, p⃗) and H(1) is also known as the Colli-
sionless Boltzmann Equation since it ignores all interactions.

Observe that the H(2) terms have a pairwise particle density f(2), but that is involved

in the time derivative of
∂f

∂t
. Repeating this, we can find

∂f(2)
∂t

in terms of third-particle
densities and Hamiltonians etc, all the way until we go back to FN .

This is the BBGKY hierachy

Escaping from the hierarchy involves approximating some f(k+1) as a combination of lower
order densities, but this must be done carefully to avoid physics-breaking shenanigans.
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1.5 Quantities in SPDFs
SPDF is useful because we can write physical quantities in terms of it. It is much like how
finding the partition function allows us to determine any thermodynamic quantity like energy
and heat capacity. f(r⃗, p⃗) can do the same.

Recall these definitions for the exam

Definition 1.5.1. The spatial particle density

n(r⃗, t) =

∫
f(r⃗, p⃗, t)dp⃗

Definition 1.5.2. The first moment gives the particle flux density

jµ(r⃗, t) =

∫
pµ
m
f(r⃗, p⃗, t)dp⃗

The mass flux density = momentum density in space.

Definition 1.5.3. The Stress Tensor is (minus) the flux density of momentum. It comes
from a second moment.

σµν(r⃗) = −
∫
pµpν
m

fdp⃗

Definition 1.5.4. The heat flux [density] has components given by a third moment.

Qµ(r⃗) =

∫
pµ
m

p2

2m
fdp⃗
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Chapter 2

Collisions and Scattering

Unless otherwise indicated, we use the single-particle Hamiltonian for Newtonian particles,
defined by

Definition 2.0.1. The single-particle Hamiltonian H(1) is defined as

H(1) =
|p⃗|2

2m
+ Φext(r⃗)

We will assume that the potential Φext is an external perturbation up ignoring the leading
order terms.

The notation will however, remain in its most general form until simplification can be
done using this specific version of H(1).

2.1 Boltzmann equation for Impurity Scattering
An ensemble of colliding particles in 2D has a mean free path.

Definition 2.1.1. The mean-free path of a system of colliding particles in 2D (there may
be multiple types of particles, but each particle of the same type is indistinguishable to the
others of the same type) is defined by

λ =
1

πa2nI

(2.1)

where

• a is the collision diameter defined by the sum of radii of a particle and the particle
it collides with (the ‘scatterer’)

• nI is the number density of scatterer particles.

It may be that the scatterer particles are the same type as the colliding particles, in
which case nI is the number density of the system.

We can rewrite λ as
λ ≃ a

ψ
=⇒ ψ ≃ nIa

3 ≪ 1 (2.2)

17
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Definition 2.1.2. ψ is the volume fraction of scatterers whose number density is nI .

If we have a volume fraction, we can find a typical nearest neighbour distance between
scattering events.

Definition 2.1.3. The nearest-neighbour distance ξ is the minimal distance of particles
over the whole system between scattering events. This means

nξ3 ≃ 1 =⇒ ξ ≃ aψ−1/3

Then the ratio of the mean free path to nearest neighbour distance is

λ

ξ
≃ ψ−2/3 (2.3)

Remark. Useful to recall this ratio.

Suppose λ/a ≫ 1. This means the mean free path is much larger than the collision
radius, so we are to treat our ensemble as colliding points.

Hence, in every collision, the energies of the colliding particles may change. This can
result in sudden changes in direction of the phase-space trajectories of particles. In essence,
the change in direction (acceleration) is driven by some change in energy. This is equivalent
to adding a source or sink term in the Liouville Eq. (1.15). This form of the equation
ignores the H(2) terms, but the energy change does depend on them. We make the following
definition:

Definition 2.1.4. The inner and outer scattering rates Sin, Sout are the respective scattering
rates (per unit volume in single particle phase space) in and out from phase-space position
(r⃗, p⃗). We also call these the gain and loss functions respectively.

Then Eq. (1.15) becomes

∂f(r⃗, p⃗)

∂t
+
∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)
= Sin(r⃗, p⃗)− Sout (r⃗, p⃗)

(2.4)

We now switch terminology a bit and call our scatterer particles, impurities.
Sout (r⃗, p⃗) = nIkout where kout is the scattering from a single impurity, i.e. the number of

particles scattered due to one impurity in a phase space volume.
Now, imagine an impurity situated at r⃗, and an incoming circular beam of particles with

momentum p⃗ directly heading towards the impurity. The beam has a density f(r⃗, p⃗) and
sweep into contact with the impurity at a rate kout. We need a formula for kout.

The amount of scattering depends on the number density and the incoming beam of
particles. Consider some ring at the external of the beam dσ. The particles in this region
scatter by different amounts depending on the radial distance from the centre of the beam,
where inner particles scatter more than outer particles in a time dt.

Imagining our particles as hard spheres, we must project our area in the direction of
scattering, i.e. in direction of p⃗. Namely, this motivates the following definition:
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Figure 2.1: Plane view of impurity scattering

Definition 2.1.5. The total scattering cross-section σ is the measure that an interaction
will occur.

It kind of behaves like a probability, however σ > 1 is very much allowed. A larger
cross-section basically means a higher chance of an interaction happening.

cross-section is not the same as probability, but they are linked.

In our impurity scattering, the scattering that occurs depends on the collision diameter
a where a larger a (e.g., larger impurities and/or larger particles) increase the likelihood
of scattering. In particular, scattering can happen anywhere in a collision area, therefore
σ = πa2.

Therefore the rate is
kout =

|p⃗|
m
f(r⃗, p⃗)σ

Definition 2.1.6. The impact parameter b is the centre-to-centre distance between the
particle and impurity before scattering.

There is an observed distribution of outgoing directions and correspondingly a distri-
bution of the cross-section over solid angles, characterised by the differential scattering
cross-section.

dσ

dΩ

We note that the ring dσ = 2πbdb and
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Lemma 2.1.1. b = a cos(θ/2) for hard impurities.

Proof. Consider the angle bisector from the centre of the impurity to the point of contact.
See Fig. 2.1. The angle 180 − θ = 2α. Using b to form a right-handed triangle, we observe
a sinα = b. However then

α =
1

2
(π − θ) =⇒ sin(α) = cos(±θ/2) =⇒ b = a cos(θ/2)

Then db = −a/2 sin(θ/2)dθ and dΩ = 2π sin θdθ (we are using solid angles as mentioned
before). Notice

dσ

dΩ
=

∣∣∣∣ 2πbdb

2π sin θdθ

∣∣∣∣ = a2

4
(2.5)

Remark. The RHS has turned out to be independent of angle, so the scattered particles are
uniformly distributed. Furtheremore there is abuse of notation as this value is really the
absolute value of the differential cross-section.

Now, we can substitute back into kout to obtain

Sout = nI
|p⃗|
m
f(r⃗, p⃗)σ =

∫
nI
|p⃗|
m
f(r⃗, p⃗)

dσ

dΩ
dΩ (2.6)

We want to write this in terms of a function W (p⃗, p⃗′) which incorporates conservation
of kinetic energy (for elastic collisions) and is symmetric so W (p⃗, p⃗′) = W (p⃗, p⃗′), i.e.
symmetric under exchange of p⃗↔ p⃗′. This function W reads as the scattering that reached
momentum p⃗′ from input momentum p⃗. Why do we want this? This allows us to find Sout, Sin

to generalise to any impurity scattering. To be more explicit, we formalise this by saying

Sout =

∫
W (p⃗, p⃗′)f(p⃗)dp⃗′ Sin =

∫
W (p⃗′, p⃗)f(p⃗′)dp⃗′ (2.7)

Lemma 2.1.2. The function W satisfying Eq. (2.7) is

W (p⃗, p⃗′) =
nI

m

dσ

dΩ
δ

(
p2

2
− (p′)2

2

)
Proof. Exchange p⃗ ↔ p⃗′ and observe the δ-function is unchanged. Additionally, the δ-
function selects the values of momenta corresponding to elastic collisions, where p′ = p.
Notice substituting this into Eqs.(2.7) recovers Eq. (2.6).

Remark. Using properties of δ functions, we can see:

δ

(
p2

2
− (p′)2

2

)
=

1

p′
δ(p′ − p) = p

p′2
δ(p′ − p) (2.8)
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But why did we do all of this? Refer back to the modified Liouville Eq. (2.4). We can
now substitute Eqs. (2.7). We get

Boltzmann Equation

∂f(r⃗, p⃗)

∂t
+
∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)
= C[f ] (2.9)

and we define

Definition 2.1.7. C[f ] as the Collision Integral which for elastic scattering is a linear
functional, but generally is non-linear. In particular,

C[f ] ∝
∫ (

W
(
p⃗′, p⃗

)
f
(
p⃗′
)
−W

(
p⃗, p⃗′

)
f(p⃗)

)
dp⃗′, (2.10)

Lemma 2.1.3. For hard-sphere impurity scattering,

C[f ] =
f(p)− f(p⃗)

τ

where τ is the average time between collisions, also known as the collision time.

Proof. The scattering in has come from other momenta. Since it is isotropic (W does not
depend on direction of p⃗′, so only angular average can contribute) then we have a term
proportional to f(p). Then the particles that come out depend on the probability distribution
at momenta p⃗ so we have a term proportional to f(p⃗). Since impurity scattering only changes
particle directions, it cannot change the angular average distribution so we must divide each
by τ .

This is the reasoning from lectures. Exact derivation non-examinable.

Comparing this C[f ] with Eq.(2.6), we see −Sout = −f(p⃗)/τ which leads to the relation

1

τ
= nIσ

p

m
(2.11)

by comparing coefficients.

2.1.1 Microcanonical Ensemble

Kinetic energy conserved in elastic collisions, so the distribution of particle energy is fairly
limited. We have a separate population for each possible value of p = |p⃗| (and equivalently
energy) and we can study each of them separately: the population at p = p0 is characterised
by a parameter p0, or equivalently the kinetic energy E = p20/2m, NOT temperature!

The equilibrium distribution is

fMCE = f0(p0, n; r⃗, p⃗) = n
1

4πp2
δ(p− p0) (2.12)

where n is the density of this population.
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2.1.2 Canonical Ensemble

Suppose we relax the idea of conservation of kinetic energy, e.g. through binary collisions as
will be seen in Section 2.2. We want to keep using a prefactor of 1/τ (makes life easier, we
students already have enough), so we must average Eq.(2.11) with respect to speed c = p/m
so

1

τ
= nIσc (2.13)

where explicitly, c = ⟨p/m⟩.

Remark. For an ideal gas,

c =

√
8kBT

mπ

This may look familiar from PX154 Physics Foundations. This is exactly the mean speed of
an ideal gas following the Maxwell distribution. In fact, the Maxwell distribution

P (c) =

(
m

2πkBT

)3/2

4πc2e−mc2/2kBT

is a valid equilibrium single particle density function, and is what non-equilibrium ideal par-
ticle distributions tend towards to. See Section 3.3 for more details.

2.2 Binary Collisions
We will define some notation for this section, and it may be different from the lecture
notes. We consider two incident particles with momenta p⃗1, p⃗2, which collide and scatter
with outgoing momenta p⃗1

′, p⃗2
′ respectively. We reserve the symbols p⃗, r⃗ for the particles

described by the distribution function f(r⃗, p⃗).

• We ignore collisions between three or more particles yet again. This is valid in cases
like dilute or rarefied gases where separations between scatterings is ≫ a.

• This ratio grows as ψ−1/3 as in Definition 2.1.3.

Then Eq. (2.10) becomes

C[f ] =

∫
W
(
p⃗1

′ → p⃗1, p⃗2
′ → p⃗2

)
f(2)

(
p⃗1

′, p⃗2
′) (2.14)

−W
(
p⃗1 → p⃗1

′, p⃗2 → p⃗2
′) f(2) (p⃗1, p⃗2) dp⃗1dp⃗2′dp⃗1′ (2.15)

To align it more consistently with notation used in lectures, this can be rewritten as

C[f ] =

∫
W
(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
f(2)

(
p⃗1

′, p⃗2
′) (2.16)

−W
(
p⃗1p⃗2 → p⃗1

′, p⃗2
′) f(2) (p⃗1, p⃗2) dp⃗1dp⃗2′dp⃗1′

To proceed, we use the following assumption:
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Definition 2.2.1. The assumption of Molecular Chaos is that the momenta of colliding
particles are uncorrelated, and independent of position. We set the scale of their indepen-
dence to be a mean free path away. Then the probability of a collision can be written as a
product of probabilities at each momenta, namely

f(2)(p⃗1, p⃗2) ≈ f (p⃗1) f (p⃗2) (2.17)

Substitution into Eq. (2.16) for both the primed and unprimed momenta gives the

Boltzmann Collision Integral

C[f ] =

∫
W
(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
f
(
p⃗1

′) f (p⃗2′) (2.18)

−W
(
p⃗1p⃗2 → p⃗1

′, p⃗2
′) f (p⃗1) f (p⃗2) dp⃗1dp⃗2′dp⃗1′

Substituting this C[f ] into Eq. (2.9) gives

Boltzmann Kinetic Equation

∂f(r⃗, p⃗)

∂t
+

∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)
(2.19)

=

∫
W
(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
f
(
p⃗1

′) f (p⃗2′)
−W

(
p⃗1p⃗2 → p⃗1

′, p⃗2
′) f (p⃗1) f (p⃗2) dp⃗1dp⃗2′dp⃗1′

2.2.1 Elastic binary collisions

The scattering rate function W is constrained by conservation of energy and momentum.
For particles of equal mass this is

Lemma 2.2.1. Scattering rate function for equal mass particles is

W
(
p⃗, p⃗1 → p⃗′, p⃗1

′
)
= Aδ

(
p⃗+ p⃗1 − p⃗′ − p⃗1′

)
δ

 p⃗2 + p⃗21
2

−

(
p⃗′
)2

+
(
p⃗1

′)2
2

 (2.20)

where
A =

1

µ2

dσ

dΩ
vrelative

where µ = m/2 is the reduced mass of the collision pair.

Proof. NON-EXAMINABLE (PROBABLY)

As in the impurity case, for hard particles this turns out to be the full expression for W .
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Chapter 3

Reversibility, H Theorem and
Equilibrium

3.1 Reversibility and the Boltzmann Equation
Definition 3.1.1. A parity transformation P is the inversion of all spatial directions,
namely p⃗→ −p⃗ etc.

Definition 3.1.2. A time-reversal transformation T is the inversion of the direction of
time, namely p⃗→ p⃗′ becomes −p⃗′ → −p⃗ etc.

Theorem 3.1.1. The scattering rate function W is invariant under PT transformations ,
i.e.

W
(
p⃗1, p⃗2 → p⃗1

′, p⃗2
′) = W

(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
(3.1)

Proof. Let us apply T to W :

T : W
(
p⃗1, p⃗2 → p⃗1

′, p⃗2
′)→ W

(
−p⃗1′,−p⃗2′ → −p⃗1,−p⃗2

)
Then apply P transformation:

PT : W
(
p⃗1, p⃗2 → p⃗1

′, p⃗2
′)→ W

(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
This concludes the proof.

This allows us to swap the primed and unprimed coordinates as we wish. If we assume the
scattering is reversible, we can simplify Eq. (2.19) which we restate here for convenience.

∂f(r⃗, p⃗)

∂t
+

∂

∂r⃗
·
(
∂H(1)(r⃗, p⃗)

∂p⃗
f(r⃗, p⃗)

)
− ∂

∂p⃗
·
(
∂H(1)(r⃗, p⃗)

∂r⃗
f(r⃗, p⃗)

)
=

∫
W
(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
f
(
p⃗1

′) f (p⃗2′)
−W

(
p⃗1p⃗2 → p⃗1

′, p⃗2
′) f (p⃗1) f (p⃗2) dp⃗1dp⃗2′dp⃗1′

We can expand the partial derivatives using properties of dot products and using Lemma 1.3.1
that Hamiltonian flow is incompressible, this sets all divergence terms to 0, as they all involve

25
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H(1). Then on the RHS we can factorise out a W since by Theorem 3.1.1, they are the same
W we obtain

∂f

∂t
+
∂H(1)

∂p⃗
· ∂f
∂r⃗
−
∂H(1)

∂r⃗
· ∂f
∂p⃗

= C[f ] (3.2)

=

∫ (
f
(
p⃗1

′) f (p⃗′2)− f(p⃗1)f (p⃗2))W (
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
dp⃗2dp⃗1

′dp⃗′2

3.2 The H Theorem
We want to show the SPDF f always tends towards equilibrium.

Definition 3.2.1. The Boltzmann-Gibbs/Shannon Entropy is defined by

S = −kB
∑
i

pi ln pi (3.3)

where pi is the probability of the ith microstate and the sum is taken over all microstates.
This should be familiar from PX285 and/or PX3A7.

Instead of discrete probabilities, we have a continuous SPDF over phase space, therefore

S(t) = −kB
∫
f(r⃗, p⃗, t) ln f(r⃗, p⃗, t)dr⃗dp⃗ (3.4)

This is usually written as a dimensionless entropy H = −S(t)/kB so

H(t) =

∫
f(r⃗, p⃗, t) ln f(r⃗, p⃗, t)dr⃗dp⃗ (3.5)

Using Leibniz rule, and being implicit on variables,

dH

dt
=

∫
∂

∂t
(f ln f)dr⃗dp⃗ =

∫ (
∂f

∂t
ln f + f

1

f

∂f

∂t

)
dr⃗dp⃗ (3.6)

=

∫
∂f

∂t
ln fdr⃗dp⃗+

d

dt

∫
fdr⃗dp⃗,

where the last term is 0 as it is a time derivative of a constant normalisation of f . For the

first term, we can directly substitute in Eq. (3.2) after rearranging it for
∂f

∂t
. Ignoring the

collision integral for now, we have the integrand simplify to(
∂H(1)

∂p⃗
· ∂f
∂r⃗
−
∂H(1)

∂r⃗
· ∂f
∂p⃗

)
ln f (3.7)

=

(
∂H(1)

∂p⃗
· ∂
∂r⃗
−
∂H(1)

∂r⃗
· ∂
∂p⃗

)
(f ln f − f)

=
∂

∂r⃗
·
(
∂H(1)

∂p⃗
(f ln f − f)

)
− ∂

∂p⃗
·
(
∂H(1)

∂r⃗
(f ln f − f)

)
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where we again used Theorem 1.3.1 and
d

df
(f ln f − f) = ln f (yes we are differentiating

with respect to a function). These terms therefore integrate out to zero and we can move
on.

Let us not forget our C[f ] still exists, and so the time derivative is

dH

dt
=

∫
ln f(p⃗1)

[∫ (
f
(
p⃗1

′) f (p⃗′2)− f(p⃗1)f (p⃗2))W (
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
dp⃗2dp⃗1

′dp⃗′2

]
dr⃗1dp⃗1

(3.8)

Theorem 3.2.1.
dH

dt
≤ 0 ⇐⇒ dS

dt
≥ 0 (3.9)

Namely, entropy is always increasing or extremised. Equivalently, entropy can never
decrease.

Proof. Time for a bit of algebra. The term ln f(p⃗) = 1
2
ln(f(p⃗1)f(p⃗2)) remembering that

we can exchange p⃗1 ↔ p⃗2. Now remember by Theorem 3.1.1 we can exchange the primed
and unprimed coordinates whenever we want. So therefore we can split the term again and
1
2
ln(f(p⃗1)f(p⃗2)) =

1
4

[
ln(f(p⃗1)f(p⃗2))− ln(f(p⃗1

′)f(p⃗2
′))
]
= 1

4

[
ln(f(p⃗1)f(p⃗2)/f(p⃗1

′)f(p⃗2
′))
]

by
properties of logarithms.

We define

• X = f(p⃗1)f(p⃗2)

• X ′ = f(p⃗1
′)f(p⃗2

′)

We can substitute this for ln(f(p⃗1)) in Eq. (3.8) and obtain

dH

dt
=

∫
(X ′ −X) ln

(
X

X ′

)
W
(
p⃗1

′, p⃗2
′ → p⃗1, p⃗2

)
dp⃗2dp⃗1

′dp⃗′2dr⃗1dp⃗1 ≤ 0 (3.10)

This attains the first inequality. Simply substituting in the definition for H proves the
⇐⇒ . Therefore entropy is always extremised or increasing - more specifically, it can never
decrease.

Corollary 3.2.1. A system always tends towards a state of maximum entropy.

Proof. We showed that entropy is always extremised. Moreover we showed it is never de-
creasing. Therefore if entropy achieves an extremum it must be a maximum.

A system of particles interacting via some Hamiltonian obeys an N -particle Liouville
equation (1.14). Its N -particle distribution function has zero total time derivative, and so
entropy is conserved and it can never reach a state of maximum entropy.

Somewhere between introducing the N -particle Liouville theorem, and the Boltzmann
equation which approximates the corresponding single particle equation in the BBGKY
hierarchy, we’ve introduced the means for our system to increase its entropy. This happened
when we made the assumption of molecular chaos (see Definition 3.3.1). Requiring that
particle momenta decorrelate at some time after each collision has led to the situation that
entropy can never decrease in our system, giving us a statistical description of particle motion
consistent with the 2nd law of thermodynamics.
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3.3 Equilibrium and the Maxwell Distribution
This section aims to prove one main theorem

Theorem 3.3.1. The probability distribution of a system in thermal equilibrium is given by
the Maxwell-Boltzmann distribution.

feq(r⃗, p⃗) = Ae−H/T = A exp

[
−p2/2m− Φext + µ

T

]
(3.11)

where T is temperature in units where Boltzmann’s constant kB = 1, µ is chemical potential,
and A is some normalising constant such that feq integrates to N - see Eq. (1.10).

Before proving this theorem, we must define what equilibrium means.

Definition 3.3.1. An ensemble is in equilibrium if the following two conditions are satis-
fied:

• The distribution function f(r⃗, p⃗, t) is stationary. We write feq(r⃗, p⃗) with no explicit
time dependence to be the stationary function.

• Detailed balance (PX3A7 Statistical Physics). This is the condition that the rate at
which particles find their way from a point (r⃗, p⃗) to some other point (r⃗′, p⃗′) must be
equal to the rate of the reverse process.

feq(p⃗1
′)feq(p⃗2

′) = feq(p⃗1)feq(p⃗2) (3.12)

Lemma 3.3.2. The advection terms in Eq. (3.2) are zero for any function f = g(H) that
does not explicitly depend on r⃗ or p⃗.

Proof. This is clear since the derivative terms
∂f

∂r⃗
,
∂f

∂p⃗
= 0, leaving only

∂f

∂t

Corollary 3.3.1. The functions satisfying Lemma 3.3.2 and Definition 3.3.1 (detailed bal-
ance) extremises entropy H.

This is useful!

Proof. Substituting f → feq in Eq. (3.8) and using the detailed balance condition causes
the integrand in Eq. (3.8) to be 0. By Corollary 3.2.1, systems obeying detailed balance are
those which maximise entropy.

We can express detailed balance as a conservation law by taking logarithms of both sides:

ln feq(p⃗1
′) + ln feq(p⃗2

′) = ln feq(p⃗1) + ln feq(p⃗2) (3.13)

Therefore ln feq summed over the two particles involved, is conserved by elastic collisions.
The only conserved quantities we actually have are energy and momentum, so ln feq must
be a scalar additive affine function of those taking the form

ln feq(p⃗) = α⃗ · p⃗− βH + γ (3.14)

where each term is conserved by collisions when summed over the two colliding particles.
Now we have two cases
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Non uniform Φext(r⃗) . Then we do not have conservation of momentum and must take
α = 0. This then gives the familiar Boltzmann (thermal) distribution

feq ∝ exp [βH] (3.15)

where the Maxwell-Boltzmann distribution Eq. (3.11) is a case.

Uniform Φext(r⃗) . We do have conservation of momentum and hence non-zero α allowed,
which turns out to correspond to thermal equilibrium in a moving frame with velocity u⃗.

Our single-particle Hamiltonian is

H =
p2

2m
+ Φext

However the real kinetic energy is 1
2m
|p⃗−mu⃗|2 = p2

2m
− u⃗ · p⃗+ m

2
u2 so we identify α⃗ = u⃗/kBT .

Please remember so far we’ve been working with kB = 1 but in SI units you need that
constant!

Therefore the general equilibrium solution for this case is

feq = f0(n, T, u⃗) = n (2πmT )−3/2 exp

[
−|p⃗−mu⃗|

2

2mT

]
(3.16)

where

• We substituted α⃗ for its definition in terms of u⃗.

• β = 1/T , the thermodynamic temperature.

• γ and the uniform potential Φext has been absorbed into a prefactor n

• (2πmT )−3/2 is a normalising constant such that∫
feqdp⃗ = n(r⃗)

the real particle density as from Definition 1.5.1.

We can now check that this distribution is an equilibrium if Lemma 3.3.2 is satisfied.

Lemma 3.3.3. f0 defined above also satisfies Lemma 3.3.2, i.e. it gives zero in the advective
terms of the Boltzmann equation

Proof. Assuming u⃗, T, n are independent of position, then yes as the divergence terms are
again zero.

So we have shown for reversible processes in equilibrium, you recover something which
looks akin to a Boltzmann distribution and that the 2nd law of thermodynamics has been
verified. Using this, we can consider what can happen as a system is only locally in equilib-
rium in the next chapter.
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Chapter 4

Local Equilibrium and Transport

4.1 Local Equilibrium
We allow Φext(r⃗), u⃗(r⃗), T (r⃗), n(r⃗) to vary slowly with position (but not momentum).

Lemma 4.1.1. With collisions viewed as point-like, the resulting local equilibrium

f0(n(r⃗), T (r⃗), u⃗(r⃗))

will obey detailed balance in the collision integral.

Proof. Indeed, whilst there is now explicit dependence on r⃗, the fact it is an equilibrium
around some point r⃗0 does mean that the advective terms in the Boltzmann equation are
zero. The system is effectively in equilibrium in an open set U = {r⃗ : |r⃗ − r⃗0| < |δr⃗|}.
However outside of this range it can no longer be considered in equilibrium.

Consider a ball kicked from the top of a hill into a valley on both sides with a trough at
the bottom. The exact position of that trough is the site of total equilibrium, and perhaps
some positions around the trough will be stable enough that the ball doesn’t budge. In fact
that trough is also a stable equilibrium since even a displacement will cause it to converge
back to that point. However go far enough from the trough and the ball will no longer be in
equilibrium.

Another local equilibrium is the perfect top of the hill, assuming there is a surface which it
can stay still on. It is also locally at equilibrium here, however it is an unstable equilibrium
as a small nudge of the ball is all it needs to start moving dramatically.

There are flaws with this analogy: a ball is a single particle, and gases aren’t. The ball is
non-interacting but particles in our system may interact with each other. Hopefully it just
gets the point across about local equilibrium.

Anyways, we now want to see how the system behaves with this new equilibrium dis-
tribution. We want to handle the resulting new spatial gradients perturbatively, seeking a
stationary solution of the form

f(r⃗, p⃗) = f0(u⃗(r⃗), T (r⃗), n(r⃗)) + ϵδf(r⃗, p⃗)

with δf ∝ ∇⃗u⃗, ∇⃗T, ∇⃗n, ∇⃗Φext, all assumed to be small gradients.

31
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Remark. Spatial gradients give current densities of momentum, heat and particles respec-
tively.

We now substitute this perturbation into the Boltzmann equation. First, we substitute
this into C[f ], omitting the parameters for W since it is the same as before:

C[f ] =

∫
W
[
f(p⃗1

′f(p⃗2
′)− f(p⃗1)f(p⃗2)

]
(4.1)

C[f + δf ] =

∫
W

[(
f(p⃗1

′) + δf(p⃗1
′)
) (
f(p⃗2

′) + δf(p⃗2
′)
)

− (f(p⃗1 + δf(p⃗1)) (f(p⃗2) + δf(p⃗2))

]
dp⃗2dp⃗1

′dp⃗′2

(4.2)

Expanding all the brackets (it’s a bit long but the algebra is simple just don’t lose track
of the indices), we can collect the like terms as so:

=

∫
W

[(
f
(
p⃗1

′) f (p⃗2′)− f (p⃗1) f (p⃗2)) (4.3)

+
(
f
(
p⃗1

′) δf (p⃗2′)− f (p⃗1) δf (p⃗2))
+
(
f
(
p⃗2

′) δf(p⃗1′)− f (p⃗2) δf (p⃗1)) (4.4)

+
(
δf
(
p⃗1

′) δ (p⃗2′)− δf (p⃗1) δf (p⃗2))]dp⃗2dp⃗1′dp⃗′2 (4.5)

Notice in the square brackets we have terms of the form ff −ff, fδf −fδf etc. for different
permutations of p⃗1, p⃗2. We thus redefine C[f ] slightly (it is inherently a notation change but
mathematically it must be clarified)

Definition 4.1.1. The Collision Integral is a bilinear functional C : R2 → R of 2 functions
g, h : R3 × R3 → R such that

C[g, h] =

∫
W [g(x′)h(y′)− g(x)h(y)]dydx′dy′ (4.6)

C[h, g] =

∫
W [h(x′)g(y′)− h(x)g(y)]dydx′dy′ (4.7)

We now must substitute our H into the advective terms of the Boltzmann equation. We
know from Lemma 1.3.1 that any gradient terms of the Hamiltonian are zero, but due to the
potential Φext(r⃗) having explicit dependence on r⃗, we keep ∇⃗Φext and we get

A[f ] :=
p⃗

m
· ∂f
∂r⃗
− ∂Φext

∂r⃗
· ∂f
∂p⃗

(4.8)

The Boltzmann equation is therefore

∂f

∂t
+ ϵA[f ] = C[f, f ] (4.9)
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Now substitute f → f0 + ϵδf we get

ϵA[f0] +O(ϵ2) = C[f0, f0] + ϵC[δf, f0] + ϵC[f0, δf ] +O(ϵ2)

We know C[f0, f0] = 0 because it is a local-equilibrium distribution. Keeping only first-
order terms in ϵ:

A[f0] = C[δf, f0] + C[f0, δf ] := LC[δf ] (4.10)

This is an inhomogenous linear equation for δf , the linearised collision integral LC[δf, f0].
Then we have δf = LC−1(A[f0]).

4.1.1 Advective term from f0

Non-zero gradients of n, T, u,Φext =⇒ A[f0], δf ̸= 0. This leads to non-zero currents of
particles, heat and momentum to drive the system to equilibrium. As from before,

LC[δf ] = C[δf, f0] + C[f0, δf ] = −δf/τ. (4.11)

i.e., scattering is isotropic.
We will define the vector ν⃗ = ∇⃗(p⃗−mu⃗(r⃗)) = −m∇⃗u⃗ because the spatial gradient is at

constant p⃗. In the notes, he uses the vector π⃗. We avoid this convention. Then

f = f0 + δf = f0

(
1− τA[f0]

f0

)
(4.12)

We now substitute Eq. (3.16) (general equilibrium solution) into Eq. (4.8) and evaluate
the advective term of our new Boltzmann equation. We must differentiate carefully, and we
make some assumptions as we derive. Note

A[f0]

f0
=

1

f0

[
p⃗

m
· ∇⃗f0 − ∇⃗Φext · ∇⃗p⃗f0

]
(4.13)

where ∇⃗ =
∂

∂r⃗
and ∇⃗p⃗ =

∂

∂p⃗

Lemma 4.1.2. Prove
∇⃗f0
f0

=
∇⃗n
n
− 3∇⃗T

2T
− ∇⃗

(
ν2

2mT

)
(4.14)

Proof. This is a regular differentiation exercise. Remember that everything is a function of
r⃗. We rewrite Eq. (3.16) as

f0(n(r⃗), T (r⃗), u⃗(r⃗)) = n(r⃗) (2πmT (r⃗))−3/2 exp

[
− |ν⃗|2

2mT (r⃗)

]
(4.15)

= nΥ(T )Θ(ν⃗, T )

Consider differentiation in one component
∂

∂rµ
. Therefore using the product rule twice

∂f0
∂rµ

=
∂n

∂rµ
ΥΘ+ nΘ

∂Υ

∂rµ
+ nΥ

∂Θ

∂rµ
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Note by the chain rule
∂Υ

∂rµ
=
∂Υ

∂T

∂T

∂rµ
= −3

2
(2πm)−3/2T−5/2 ∂T

∂rµ
= −3

2

Υ

T

∂T

∂rµ
.

By the chain rule also,
∂Θ

∂rµ
= Θ

∂

∂rµ

(
ν2

2mT

)
.

Now we can turn everything into vector form again by computing the derivative for each
component. We are currently at

∇⃗f0 = ΥΘ∇⃗n× n

n
− nΘΥ

3

2

∇⃗T
T

+ nΘΥ∇⃗
(

ν2

2mT

)
(4.16)

Notice every term has a factor f0 = nΥΘ so we factor these out and divide. This proves our
lemma.

We substitute this back into Eq. (4.13) and note that ∇⃗p⃗f0 = ν⃗
mT

. Now substitute for
every derivative term, allowing us to obtain

A[f0]

f0
=

(
ν⃗

m
+ u⃗

)
·

(
∇⃗n
n

+

(
ν2

2mT
− 3

2

)
∇⃗T
T

+
1

T
(∇⃗u⃗) · ν⃗

)
+

ν⃗

mT
· ∇⃗Φext

• We ignore the extra u⃗ in the term
(

ν⃗
m
+ u⃗
)

whilst keeping its gradient ∇⃗u⃗. This is
because the direction u⃗ is parallel to the flow and changes in this direction are higher
order contributions which we are neglecting.

Following this assumption through, then after some rearranging we obtain

A[f0]

f0
=

ν⃗

m
·

(
∇⃗n
n

+

(
ν2

2mT
− 3

2

)
∇⃗T
T

+
1

T
∇⃗Φext

)
+

1

mT
ν⃗ · (∇⃗u⃗) · ν⃗. (4.17)

4.1.2 Relaxation Time Approximation

Definition 4.1.2. The quantity τ is the average time between scattering events. It is
the relaxation time.

This is the same τ met in Chapter 2.
Using the Mean Field, we can invoke our equations and note that τ ∼ c/λ so

LC[δf ] = −cδf
λ

(4.18)

This is the Relaxation Time Approximation.

Then the average with fixed temperature T gives c̄ for impurity scattering. Additionally,
for binary collisions, the above becomes

LC[δf ] = −cavδf
λ

(4.19)

where cav =
√
2c̄ is the thermal average (from the Maxwell distribution).
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4.2 Impurity Scattering and Diffusion
The analysis in the previous section applies to microcanonical particles subject to impurity
scattering. Consider the case where u⃗ = 0 =⇒ ν⃗ = p⃗, n = n(r⃗) and ∇⃗T = 0. Since u⃗ is
zero everywhere, it follows ∇⃗u⃗ = 0

Then Eq. (4.13) reduces to

A[f0]

f0
=

p⃗

m
· ∇⃗n
n

+
1

T
∇⃗Φext (4.20)

The number density still depends on position, so we have a current of particles. We can
use Definition 1.5.2 to calculate the response current density at a point in space. We
substitute f → f0 + δf using Eq. (4.12) and the RTA. Then

j⃗ =

∫
p⃗

m

−p⃗
m
·

(
∇⃗n
n

+
1

T
∇⃗Φext

)
τf0dp⃗ (4.21)

=
−τ
m2
⟨p⃗p⃗⟩ ·

(
∇⃗n+

n

T
∇⃗Φext

)
(4.22)

where first term is expectation of outer product of momentum (2m×Mii, isotropic tensor).
Notice we are integrating over dp⃗ so we get the spatial number density n from Definition 1.5.1
and so we can think of the product of momenta as an expectation value.

4.2.1 Second moments of the Maxwell Distribution

Definition 4.2.1. The second-order moment tensor Mµν is defined as the product
expectation value of some continuous (or discrete, but we state continous version here)
random variable X with density h(x):

Mµν =

∫
xµxνh(x)dx = ⟨xµxν⟩ (4.23)

Remark. Consider the similarity between this and the stress tensor in Eq. (1.5.3).

In our case, we have a distribution of momenta. We know that

f0 ∝ e−
p2

2m = e−
p2x
2m e−

p2y
2m e−

p2z
2m (4.24)

Then, applying standard integral results,

Mii = ⟨p2i ⟩ =
∫
p2i e

−p2i /2mTdpi∫
e−p2i /2mTdpi

=⇒ qi :=
pi√
2mT

=⇒ Mii = mT

Lemma 4.2.1. Mµν = 0 for µ ̸= ν.

Proof. This is clear by standard integral results. Using Definition 4.2.1 with xµxν → pµpν
for µ ̸= ν and f → f0 )as in Eq. (4.24)) we get that

⟨pµpν⟩ =
∫
pµpν exp

[ pµpµ
2mT

]
dpµ = 0
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Physically, this means momenta in orthogonal directions are not correlated with each
other. This makes sense because they are independent degrees of freedom.

Corollary 4.2.1.
Mµν = mTδµν ≡ mT I

where I is the second-rank isotropic tensor - alternatively the Kronecker delta.

Given this, we write j⃗ as

j⃗ = −D
(
∇⃗n+

n

T
∇⃗Φext

)
(4.25)

=⇒ D =
τT

m
=

1

3
τc2 (4.26)

4.2.2 Einstein Relation

Now the external potential induces a force F⃗ = −∇⃗Φext. This causes an acceleration, and
therefore a velocity response

v⃗ =
F⃗

α

where α is the drag coefficient.
The current density j⃗ = nv⃗ = −n

α
∇⃗Φext. Compare the coefficient to above, we have

−Dn
T
∇⃗Φext = −

n

α
∇⃗Φext =⇒ D =

kBT

α

where kB = 1 in our units but we rewrite it for SI.

4.2.3 Quasi-Static Evolution

In the limit where spatial gradients are small and evolution is slow (i.e. requires large
timesteps) we can use a quasi-static evolution where we set j⃗ = j⃗static. By Eq. 1 we have

∂n

∂t
= −∇⃗ · j⃗ = ∇⃗ · −D

(
∇⃗n+

n

T
∇⃗Φext

)
(4.27)

This has mathematical and physical consequences. Ignoring the potential term, we have
the PDE

∂n

∂t
= −∇⃗ · j⃗ = −D

(
∇⃗2n

)
(4.28)

This is the Diffusion Equation. Introducing the potential term as before is an example of
a Fokker-Planck equation.

Remark. Fokker-Planck equations are great. You can use them to study diffusion with
external or random forces, such as in Brownian motion.
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4.3 Stress and Viscosity

On some surface dS⃗, we have a force dF⃗ applied. Then dF⃗ = ΣdS⃗. Alternatively, dFα =
ΣαβdSβ. But since we apply the force, this is a rate of injection of momentum. We sub in
p⃗ = mu⃗+ ν⃗, with ν⃗ from the comoving pressure.

Definition 4.3.1. The pressure tensor Σµν is defined as

−Σ =

∫
p⃗p⃗

m
fdp⃗ (4.29)

The second moment of f (full distribution of all particles) is the first interesting one: it
tells us (minus) the stress tensor as the flux density of momentum. We do minus since we
want the posiitve direction to be injecting momentum to the system.

−Σ =

∫
p⃗p⃗

m
fdp⃗ = ρu⃗u⃗+

∫
(u⃗ν⃗ + ν⃗u⃗)fdp⃗+

∫
ν⃗ν⃗

m
fdν⃗

where ρ = mn is the mass density and ρu⃗u⃗ is the Reynolds stress.

Lemma 4.3.1. ∫
(u⃗ν⃗ + ν⃗u⃗)fdp⃗ = −τ u⃗ · ∇⃗(ρu⃗u⃗)

This term is the gradient correction to the Reynolds stress.

Proof. Non-examinable.

Considering we still have uniform T,Φext, n then substituting f = f0 + δf gives the last
term as

Lemma 4.3.2. Prove that the last term is a momentum average (ν⃗) over f0. Namely,∫
ν⃗ν⃗

m
f0 (1− τA [f0] /f0) dν⃗ = n

〈
ν⃗ν⃗

m

(
1− τ

mT
ν⃗ · (∇⃗u⃗) · ν⃗

)〉
0

where ⟨h(ν)⟩0 =
∫
h(ν)f0dν⃗, the momentum expectation value.

Proof. So it is easier to see, we start from the LHS. Note, from Eq. (4.15) that f0 ∝
n(r⃗) exp [−ν2/2mT ]. We will substitute in Eq. (4.17) with the uniform gradients and get∫

ν⃗ν⃗

m
f0

(
1− τA [f0]

f0

)
dν⃗ =

∫
f0
ν⃗ν⃗

m

(
1− τ

mT
ν⃗ · (∇⃗u⃗) · ν⃗

)
︸ ︷︷ ︸

h(ν)

dν⃗ = n

∫
f0h(ν⃗)dν⃗

We have suggestively written this as an expectation value and factored out n from f0 so
there is again an abuse of notation. Therefore writing the last step we see

n

∫
f0h(ν⃗)dν⃗ = n

〈
ν⃗ν⃗

m

(
1− τ

mT
ν⃗ · (∇⃗u⃗) · ν⃗

)〉
0

(4.30)
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with ∇⃗u⃗ the shear stress tensor. In particular, distributing the expectation value to
products we see that this equals to

n

m
⟨ν⃗ν⃗⟩0 −

nτ

m2T
⟨ν⃗ν⃗ν⃗ · (∇⃗u⃗) · ν⃗⟩0 (4.31)

Lemma 4.3.3. Prove

⟨νανβνγνδ⟩ = (mT )2 (δαβδγδ + δαγδβδ + δαδδγβ) (4.32)

Proof. Non-examinable, however we will need this. For a general proof before taking ex-
pectation values, see Hodge, 1961. The general idea is that the general 4th rank isotropic
tensor can be decomposed as a sum of tensor products of 2nd rank isotropic tensors - i.e.
Kronecker deltas. The general expression is

νανβνγνδ = (Aδαβδγδ + Bδαγδβδ + Cδαδδγβ) (4.33)

with A,B, C constants specific to the problem.
By Corollary (4.2.1), we see that taking expectation values means A,B, C = (mT )2. This

concludes the proof.

Now we return back to Eq. (4.3.1) and substitute in for all the values we have so far.
Then

Pressure Tensor

Theorem 4.3.4.

Σ = −ρu⃗u⃗− nT I+ nTτ
(
∇⃗u⃗+ (∇⃗u⃗)T + I∇⃗ · u⃗

)
(4.34)

where we identify

•
ΣReynolds = ∇⃗u⃗+ (∇⃗u⃗)T

as the viscous stress or Reynolds stress tensor

•
Σbulk = I∇⃗ · u⃗

as part of the bulk viscosity

Proof. NON-EXAMINABLE (probably, I mean this stuff is long...). There is a partial
proof actually in the LATEXcode for this but it’s incomplete and about an entire page...
TL;DR is to work through the outer products and indices and use the fact there is no

convective acceleration to remove the term in ∇⃗(ρu⃗u⃗) term.
We obtain the following by dimensional homogeneity (SI units):

• The ideal gas pressure P = nkBT

• The viscosity η = nkBTτ
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4.3.1 Quasi-Static Evolution

Want to use continuity of momentum:

∂

∂t
(nmu⃗) + ∇⃗ · (−Σ) = 0

Typically we rewrite it with ρ = mn and substituting in for Σ we get

∂

∂t
(ρu⃗)− ∇⃗ · ΣReynolds︸ ︷︷ ︸

ρ D
Dt

u⃗

= ∇⃗ · Σviscous − ∇⃗P

This is the Navier-Stokes equation.

4.4 Thermal Conductivity
We want to use Definition 1.5.4 to get the heat current density so

J⃗ =

∫
ν2

2m

p⃗

m
fdp⃗

Consider a stationary fluid, so ν⃗ = p⃗. We need to track ∇⃗T, ∇⃗n whilst we choose ∇⃗Φext =
0 =⇒ ∇⃗P = 0. From the ideal gas law, with kB = 1, we have

∇⃗T
T

= −∇⃗n
n

=⇒ J⃗ =

∫
1

2m2
p2p⃗f0 (1− τA[f0]/f0) dν⃗ +O(u⃗)

= − nτ

2m2

〈
ν2ν⃗A [f0] /f0

〉
0

(4.35)

= − nτ

2m2

(〈
ν2ν⃗

ν⃗

m

〉
0

·

(
∇⃗n
n
− 3

2

∇⃗T
T

)
+

〈
ν2ν⃗

ν⃗

m
ν2
〉

0

1

2mT

∇⃗T
T

)
(4.36)

= −nτT
2

2m

(
5

(
∇⃗n
n

)
+ 10

∇⃗T
T

)
(4.37)

from substituting Eq. (4.13) into the heat current density. To get to the last line, we used
extensions of previous lemmas to show

⟨π2παπβ⟩0 = 5(mT )2δαβ (4.38)
⟨π4παπβ⟩0 = 35(mT )3δαβ (4.39)

J⃗ = − τT
2m

(
5
(
T ∇⃗n

)
+ 10n∇⃗T

)
= −5τT

2m

(
n∇⃗T

)
(4.40)
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We have derived the thermal conductivity law

J⃗ = −K∇⃗T (4.41)

Definition 4.4.1. The thermal conductivity is

K = −5τTn

2m
(4.42)

Definition 4.4.2. The isobaric heat capacity for an ideal monatomic gas is

Cp =
5

2
kB (4.43)

Remark. Observe τTn = η, the viscosity so K = Cpη

m

Definition 4.4.3. The Prandtl number defined as

η/m

K/Cp

= 1 (4.44)

We observe in experiments and simulations that for simple molecular gases such as air, it is
about 0.7. This demonstrates that we are very much in an approximation regime.

4.5 Shortcomings
To improve our analysis, we can relax some assumptions made.

• Do not assume that scattering is isotropic as in Eq. (4.11).

• Velocity dependence of the collision rate τ , such as in Eq. (2.11) and Definition 4.1.2.

• No best choice of moments to take - do we always carry averages forward, or is there
a point where we can stop using averages etc. Simplifying using averages (moments)
introduce assumptions about the system behaving fairly uniformly.



Chapter 5

Diffusion

5.1 Quantum Fermi Gas
We go for a semiclassical treatment.

Definition 5.1.1. The Pauli Exclusion Principle (PEP), is that two particles cannot
occupy the same single particle quantum state (or level).

This is coupled to how we count single particle states in free space.

Lemma 5.1.1. For each of spin up (+) and spin down (−) the count of single particle states
in phase space is given by

dQ± =
V

h3
dp⃗

Proof. Deriving this should be familiar from PX285 Statistical Mechanics or PX262 Quantum
Mechanics. Consider a cube with side lengths L of fermions in 3D. The volume V ∼ L3 for
a small enough box. The Time-Independent 3D Schrödinger equation reads

Eψ⃗ = − ℏ2

2m
∇⃗2ψ⃗ + V (r⃗)ψ⃗ (5.1)

For a 3D box, we obtain the solution

ψ⃗ ∝

sin (kxx)sin (kyy)
sin (kzz)


where kµ = 2π

L
nµ with nµ the number density in direction µ.

Now dQ = dnxdnydnz =⇒ dk = 8π3

L3 dQ. Then as p⃗ = ℏk⃗ =⇒ dp = ℏdk =⇒ dp =
8π3ℏ
V
dQ. Remember that ℏ = h

2π
. Substituting this in proves the lemma.

Corollary 5.1.1. The density of single-particle levels in phase space is

q± =
dQ±

V dp
=

1

h3
(5.2)

41
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Remark. In the notes, he uses dp⃗ but to keep the mathematics consistent, it’s really a phase
space volume d3p we are talking about.

Additionally q± = 1 in natural units where h = 1.

The PEP forces states below the Fermi energy EF to fill. In particular, in an isotropic
system, the Fermi surface is a sphere1 with radius equal to pF =

√
pµpµ and EF =

p2F
2m
≫ kBT .

Definition 5.1.2. The filling factor is defined as

phase space density of particles
phase space density of states

(5.3)

Then the total number of particles N = Q+ +Q− = 2
V 4π

3
p3F

h3 . Then

2mEF =

(
3

8π
nh3
)2/3

(5.4)

5.1.1 Scattering and Equilibrium

Recall that f is a probability distribution for indistinguishable particles - fermions as we
are currently considering - to take a momentum p⃗. The effect of the PEP is to reduce any
scattering rate by a factor (1 − f ′) := 1 − f(p⃗1′) for a scatter which takes a fermion from
momentum p⃗1 → p⃗1

′ which is the probability that the state scattered into is unfilled.
Since we have fermions, we have to consider different cases:

Reversible Impurity Scattering Unchanged net collision rates. The scattering (gain
and loss functions) for a fermion p⃗1 → p⃗1

′ is slightly different to Eqs. (2.7), namely the
integrands are

W (p⃗1 → p⃗2)f(p⃗1)(1− f(p⃗1′)) (5.5)

However, considering Sin − Sout gives the integrands as

W (. . .)(f(p⃗1)(1− f(p⃗1′))− f(p⃗1′)(1− f(p⃗1))) = W (. . .)(f ′ − f)

Binary collisions The modification to probabilities do not all cancel. We must consider
the probabilities of each fermion initially with momenta p⃗1, p⃗2. The scattering (gain and loss
functions) for these fermions are again similar to those in the integrands of Eqs. (2.7):

W
(
p⃗1p⃗2 → p⃗1

′, p⃗2
′) (5.6)

×
[
f(p⃗1)(1− f(p⃗1′))f(p⃗2)(1− f(p⃗2′))

− f(p⃗1′)(1− f(p⃗1))f(p⃗2′)(1− f(p⃗2))
]

1Specifically, we have 3 momentum directions, so the Fermi surface is a 2-sphere embedded in R3.
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Our detailed balance in Definition 3.3.1 must now satisfy

feq(p⃗1)(1− feq(p⃗1
′))feq(p⃗2)(1− feq(p⃗2

′)) = feq(p⃗1
′)(1− feq(p⃗1))feq(p⃗2

′)(1− feq(p⃗2))

This equation can be rearranged into the form

f ′
1

(1− f ′
1)

f ′
2

(1− f ′
2)

=
f1

(1− f1)
f2

(1− f2)

with the primed and unprimed coordinates on separate sides. Again, we rewrite this as a
conservation law by taking logarithms of both sides

log

(
feq

(
p⃗1

′)
1− feq

(
p⃗1

′)
)

+ log

(
feq
(
p⃗2

′)
1− feq

(
p⃗2

′)
)

= log

(
feq(p⃗1)

1− feq(p⃗1)

)
+ log

(
feq (p⃗2)

1− feq (p⃗2)

)
(5.7)

Following the same idea by relating each log to some function of energy as in Eq. (3.14) we
have

feq (p⃗′)

1− feq (p⃗′)
∝ e−β(E−µ)−α⃗·p⃗ (5.8)

As in Section 3.3, we make no assumptions about the momentum as the momentum term
can be chosen arbitrarily by changing frame of reference, so α⃗ = 0 and we recover:

Fermi-Dirac Distribution

Theorem 5.1.2. The Fermi-Dirac Distribution is the equilibrium distribution for an
ensemble of fermions.

feq = f0(E) =
1

eβ(E−µ) + 1
(5.9)

where

• µ is the chemical potential of the system which at T = 0 is the Fermi energy.

• β = 1/kBT is the thermodynamic temperature yet again.

This depends on r⃗ and p⃗ only through H (whose value is E), the advective terms of the
Boltzmann equation also give zero with this distribution so we do have a full equilibrium:

f(r⃗, p⃗) =
1

eβ(H(1)(r⃗,p⃗)−µ(r⃗)) + 1

Remark. • µ vs EF : As T → 0(β →∞), µ = EF

• For T > 0, µ is well-defined but EF is not. The Fermi surface is fuzzy on scale of kBT ,
i.e. a region around the Fermi momentum/energy where the occupation is not strictly
1 or 0.

Theorem 5.1.3. Using the same analysis, show that for bosons, we get the Bose-Einstein
Distribution.

feq = f0(E) =
1

eβ(E−µ) − 1
(5.10)
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Proof. It is almost identical proof, however bosons do not obey PEP, so we can have multiple
bosons in the same state, so the probability of entering a state is 1 + f .

Remark. Because these distributions depends on r⃗ and p⃗ only through H (whose value is
E), the advective terms of the Boltzmann equation also give zero with this distribution so we
do have a full equilibrium.

5.1.2 Diffusion, Conductance and Einstein’s Law

As for classical, binary scattering is crucial in determining the equilibrium energy distribution
of the particles, but it makes no direct contribution to attenuating the particle current
(density) because the sum of particle momenta and hence total current is conserved in
binary collisions.

For elastic impurity collisions, energy is conserved at the single particle level and cannot
adjust its distribution, but it certainly does attenuate the particle current.

We consider an ensemble obeying a FD distribution in Eq. (5.9). We suppose µ = µ(r⃗)
a property of the system and an external potential Φext(r⃗) and their gradients, which we
will say are non-zero. We seek to find the corresponding steady perturbation to the particle
distribution and its current. Our perturbation is therefore

f = f0(µ(r⃗)) + δf (5.11)

Substitute this into the Boltzmann equation in Eq. (2.9) and we get

∂H(1)

∂p⃗
· ∇⃗µ∂f0

∂µ
− ∇⃗Φext ·

∂H(1)

∂p⃗

∂f0
∂E

= −δf
τ

(5.12)

where we have introduced again the RTA as in Definition 4.1.2 for C[f ]. We are only taking
f0 to first order f0 ≈ ∂αf0∇⃗µ since f0 varies slowly and δf is a small correction and varying
slowly.

Lemma 5.1.4. Prove that the change in equilibrium with the chemical potential is the neg-
ative of the change in equilibrium with energy

∂f0
∂µ

= −∂f0
∂E

(5.13)

Proof. We consider the change of variables µ(r⃗) → E(r⃗) − µ(r⃗) from the FD distribution.

Then
∂E

∂µ
= −1. Substituting this using chain rule proves this.

Then the Boltzmann equation simplifies to

δf = τ
(
∇⃗µ(r⃗) + ∇⃗Φext(r⃗)

)
·
∂H(1)

∂p⃗

∂f0
∂E

(5.14)

Physical explanation: setting up a gradient of chemical potential and applying an external
force field have the same effect. δf is concentrated near the Fermi surface because of the
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factor
∂f0
∂E

= −f0(E)(1 − f0(E))/T which becomes exponentially small for |E − EF | large
compared to kBT . In the quantum case all the scattering action and effect is concentrated
around the Fermi surface.

We can interpret the result for δf in Eq. (5.14) as a Taylor expansion of the equilibrium
distribution f0 rigidly displaced in momentum.

Using the chain rule, we say f0(H(1)) such that the product of derivatives simplifies to
∂p⃗f0, then leads to:

f(p⃗) = f0(H(1)(p⃗)) + δf = f0(p⃗−∆p⃗+O(∇2))

where the last term contains all higher-order gradients which we will neglect and we define

Definition 5.1.3. The momentum displacement is the momentum acquired in a gain τ :

∆p⃗ = −τ(∇⃗µ+ ∇⃗Φext) (5.15)

Ignoring higher-order terms, we see the FD distribution is now centred on the momentum
displacement. This is equivalent to a force acting on all the states on the Fermi surface for
a time τ , which shifts the surface (PX385 Condensed Matter Physics).

Evaluating the current by considering ∆p⃗/m (5.14):

j⃗ = n∆p⃗/m = −M(∇⃗µ+ ∇⃗Φext)

Definition 5.1.4. The quantity M is called the mobility defined as

M =
nτ

m
(5.16)

This is the ratio of the particle’s velocity to the force −∇⃗Φext applied.

We see there are 2 current-contributing terms: −M∇⃗µ and −M∇⃗Φext. In particular,

j = −M∇⃗µ = −M∂µ

∂n
∇⃗n = −D∇⃗n (5.17)

(5.18)

We arrive at

Generral Einstein Relation

D =M
∂µ

∂n
(5.19)

This is the general form of the Einstein relation. In the classical limit, M = nD/T . The
most relevant external driving force is electric field E⃗ on particles of charge q : ∇⃗Φext = qE⃗
and:

j⃗e = σE⃗ = (−M∇⃗Φext)E⃗ =
nq2τ

m
E⃗
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Lemma 5.1.5.

σ =
nq2τ

m

This is Drude’s result (PX385 Condensed Matter Physics and this Cambridge page for
more information).

Proof. This proof is non-examinable.

In the diffusion equation, 0 = ∇⃗ · j⃗ + ∂tn. We can put expression for j = −D∇⃗n inside:

∂n

∂t
= D∇⃗2n (5.20)

This is the Diffusion equation.

5.2 Weak Scattering, Momentum diffusion and Fokker-
Planck Equation

5.2.1 Review of the Diffusion Equation

Definition 5.2.1. Fick’s Law
j⃗ = −D∇⃗n

Recall for classical impurity scattering, Eqs (4.25) gives

D =
1

3
τc2 =

1

3
λc (5.21)

and additionally, Eq. (5.19) for quantum scattering. Whatever one we use we get the diffusion
equation Eq. (5.20).

Now, imagine particles on a line either in real space or momentum space. These particles
jump/move a distance a at a rate 1/τ but choose a direction randomly (step distribution).
Define n(x, t) be number between Ux,a = [x − a/2, x + a/2] with properties directly above
about rate and direction. Then

Lemma 5.2.1.

n(x, t+ δt) = n(x, t)− n(x, t)δt
τ

+
n(x+ a, t)

2

δt

τ
+
n(x− a, t)

2

δt

τ
(5.22)

Proof. In a time δt, any 3 things can happen. The first term n(x, t) is simply just the initial
number of particles at time t. Since it is a count, it is nonnegative, n(x, t) ≥ 0.

1. The term n(x, t) δt
τ

is the number of particles as a fraction of n(x, t) which choose to
leave the interval Ux,a. This decreases the number of particles, hence the − sign in
front.
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2. The term n(x+a,t)
2

δt
τ

describes the number of particles which choose to jump into Ux,a

from the right, i.e. interval Ux+a,a, as a fraction of the number of particles on the RHS
which is n(x + a, t). This increases the number of particles in Ux,a so it is a positive
quantity.

3. Similarly, the term n(x−a,t)
2

δt
τ

describes the number of particles which choose to jump
into Ux,a from the left, i.e. interval Ux−a,a, as a fraction of the number of particles on
the LHS which is n(x−a, t). This again would increase the number of particles in Ux,a

We perform a Taylor expansion and stop at second order assuming n(x, t) varies slowly
and is smooth over the interval (x− a, x+ a):

n(x± a, t) ≈ n(x, t)± a ∂n
∂x

+
a2

2

∂2n

∂x ∂x
(5.23)

Using the definition of a partial derivative, taking limits to get the time derivative in
Eq. (5.22) and the spatial Taylor expansion Eq. (5.23) we see

∂n

∂t
= lim

δt→0
=
n(x, t+ δt)− n(x, t)

δt
= − a

2

2τ

∂2n

∂x2
(5.24)

Remark. • Tells us

D =
a2

2τ

, with a the mean free path and τ is time between scattering events.

• In 3D,
D = a2/6τ

• Diffusion equation models heat, diffusion (duh), random walks, Brownian motion,
chemical reactions, financial systems and many more physical processes.

• The PDE is 2nd-order, homogeneous and linear.

Suppose we add an advective term in Eq. (5.23) of the form

v
∂n

∂x

where v is a speed. This acts to move the particles towards the right (or left if v < 0). We
will show the following theorem

Theorem 5.2.2. The addition of any advective terms does not affect the underlying physics
of the particles, i.e. the particles still diffuse the same way.

Mathematically, this is saying a linear transformation of variables of the advective diffu-
sion equation will recover the regular diffusion equation in terms of the transformed variables.
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Proof. Mathematical remark: we ignore the boundary conditions - these depend on the
physical problem at hand and will be in terms of x, t. During the transformation, these
boundary conditions must also be transformed into the new variables to be consistent. It is
important that the transformation chosen preserves all the properties of the system.

We introduce a speed v to all the particles. Assuming v ≪ c we can perform a Galiliean
transformation

t′ = t, x′ = x− vt

Using the multivariable chain rule, the derivatives become

∂x = ∂xx
′∂x′ + ∂xt

′∂t′ = ∂x′ (5.25)
∂t = ∂tx

′∂x′ + ∂tt
′∂t′ = ∂x′ = −v∂x′ + ∂t′

=⇒ −v∂x′n+ ∂t′n+ v∂x′n−D∂xxn = 0

=⇒ D
∂2n

∂x′2
=
∂n

∂t′

i.e. the advection terms vanish and we recover the original diffusion equation in (x′, t′)

Intuitively, this makes sense. If we give every particle the same uniform boost in speed,
all we need to do is change the reference frame to a frame which moves with speed v in the
same direction of motion, so therefore the particles are once again diffusing as if there was
no advection.

It is now time to move on to solving this PDE, you may have seen this in Mathematics
for Physicists or MA250 Introduction to PDEs.

Theorem 5.2.3. The fundamental solution or Green function to the diffusion equa-
tion Eq. (5.20).

n(x, t) ∼ 1√
2πD(t− t0)

e−x2/4D(t−t0) (5.26)

for diffusion that starts at t = t0, and particles which don’t have a velocity p⃗.

Proof. We take a spatial Fourier transform

ñ(k, t) = F[n(x, t)] =
1√
2π

∫
Γ

n(x, t)eikxdx (5.27)

and apply this to the diffusion equation. Note that F[∂tn] = ∂tñ since we assume n is smooth.
Also, F[∂xxn] = −k2ñ. The diffusion equation now reads

∂ñ

∂t
= −Dñ (5.28)

We can directly solve this, namely

ñ(k, t) ∝ e−Dk2t (5.29)
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Now take the inverse spatial Fourier transform to get back to x:

n(k, t) = F−1[ñ(k, t)] =
1√
2π

∫
Γk

ñ(k, t)e−ikxdk (5.30)

=
1√

2πD(t− t0)
exp

[
− x2

4D(t− t0)

]
where the prefactor comes from satisfying normalisation, so the area under the curve (surface)
is 1. Moreover, n = 0 when t < t0.

Again we have shown that a random selection of particles obey some form of distribution
law, namely the distribution of particles forms a Gaussian.

Corollary 5.2.1. We recover the definition of the Dirac-δ function by taking limits. Since
t ≥ t0 we take limits t→ t+0 so

lim
t↓t0

n(x, t) = δ(t− t0)δ(x− x0)

Corollary 5.2.2. With an advective term, the fundamental solution is

n(x, t) =
1√

2πD(t− t0)
exp

[
− (x− vt)2

4D(t− t0)

]
Statistically, this is a normal distribution with mean x = vt and standard deviation

σ = 2D(t− t0). Furthermore, the Full-Width-Half-Maximum (FWHM) is 2σ wide.

Theorem 5.2.4. The solution to the same problem in 3D (i.e. the 3D diffusion equation)
for particles centred at some x⃗0 is

n(x⃗, t) = (2πD(t− t0))−3/2 exp

[
−|x⃗− x⃗0 − v⃗(t− t0)|

2

4D(t− t0)

]
(5.31)

Proof. Due to properties of Fourier transforms, the different directions are independent -
namely our solution is separable.

Physically, this means each direction is independent, and does not affect distributions in
the other directions. In this case, σ ∼

√
Dt and

⟨
∣∣x⃗− x⃗02∣∣⟩ ∼ Dt (5.32)

Moreover, suppose we continue to let the system evolve and make many measurements.
Then the error, assuming they are not systematic, i.e. they are random, will keep growing.
Importantly,

Error ∼
√
N =⇒ Error

N
∼ 1√

N
(5.33)

Generally speaking, If you find an argument to show that the time variation of some
quantity is stochastic (governed by random forces or charges) characterised by a size of
change a and a rate of events 1/τ , then you can safely assume the solution is a Gaussian for
n as in Eq. (5.31) with D ∼ a2/τ .

However there are caveats to take into account:
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• Is D a constant? It is common for D to depend on x, it may not change how the
system behaves after a long time but it can make things complicated (e.g., we can’t
pull D out in the continuity equation).

• Are jumps large? Need to think about the distribution in a like in financial markets.
It is helpful to carefully consider what is being modelled.

Finally, consider the diffusion equation

∂n

∂t
−D∂

2n

∂x2
= δ(t− t0)δ(x− x0) (5.34)

which is the diffusion equation with an initial particle at (x0, t0) (which is what the RHS
specifies physically). This is a linear PDE and that is awesome, but we could have a more
complicated inhomogeneous PDE

∂n

∂t
−D∂

2n

∂x2
= δ(t− t0)f(x) (5.35)

which is saying at t = t0 we have some distribution of particles f(x). The fact it is linear
means we can treat f(x) as an integral over the sum of many weighted δ functions at different
x values - namely we must do an integral and

n(x, t) =

∫
G(x− x0, t− t0)f(x0)dx0 (5.36)

where

G ∼ 1√
2πD(t− t0)

exp

[
− (x− x0)2

4D(t− t0)

]
We could also have some function of t so now we’d also need to integrate over time, but over
the interval [−∞, t] since we cannot have future events influence present events.

5.2.2 Momentum Diffusion

This section is NON-EXAMINABLE FOR 2023-24 and therefore has currently been
omitted.

5.3 Black-Scholes Equation

This is an application of diffusion and drift.

Definition 5.3.1. A Call Option is the right (but no obligation) to buy the share (or
whatever financial asset) at a fixed strike price K on a fixed future maturity time Tm.

Definition 5.3.2. A put option is the right (not obligation) to sell the share at some strike
price Sm and maturity time Tm
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Suppose I’m selling an NVIDIA RTX 4090 (a GPU). Suppose I fix the price at £1700
based on current markets and you request from me a call option, say a couple months you
want it to be £1600. If the market price drifts below £1600 towards that maturity date, you
are less likely to purchase from me at your chosen time. We want to be able to model asset
prices.

The argument for the model goes as so

1. Consider logarithm x = log(S) (called the logprice) of the share or asset price S,
equivalent to fractional changes in S. Namely, δx = δS/S..

2. We assume an efficient market: any anticipatable coming price change should already
be priced in, so the expected price change should simply match general interest rates
(also called discounting).

3. Every time interval δt =
∑

i δti with corresponding changes in logprice δx =
∑

i δxi =
δS/S, the δxi should be statistically independent leading to δx being Gaussian
distributed (by the Central Limit Theorem). This assumes the δxi have finite vari-
ances.

The share price function

⟨S(t)⟩ = S(t0)e
r(t−t0) = S(t0) exp

[∫ t

t0

r(t′)dt′
]

(5.37)

where r is the rate of interest. The fractional expected price update in a small interval

⟨S(t+ δt)/S(t)⟩ = ⟨eδx⟩ = eDδt+vδt (5.38)

The probability of logprice change

P (δx, δt) ∝ exp

(
−(δx− vδt)2

4Dδt

)
where v is drift velocity of price. This is once again a Gaussian distribution with

Definition 5.3.3. The volatility is defined as

2D =
variance of logprice change

δt
(5.39)

The volatility is commonly cited as

σ√
δt

=
√
2D

Comparing Eqs. (5.37),(5.38) we see that

v = −D + r (5.40)

Notice our v has a −D term, which is due to working with logprice rather than actual price.
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Stocks themselves are conserved. 1 share in a company remains, 1 share in a company.
It is possible for a company to increase the number of shares but this generally has to be
agreed on by all investors in the company. But if there is no motivation to do so (e.g., no
‘force’), then shares are conserved even if their prices changes. This conservation of stocks
is like conservation of particles - one electron remains 1 electron. We make the analogue

Position of particle←→ Logprice of stock/asset (5.41)

Now, we identify probability current density

j(x, t) = vP −D∂P
∂x

Substituting into the continuity equation gives us another Fokker-Planck equation:

∂P (x, t|x0, t0)
∂t

+
∂

∂x
[(−D + r)P ] =

∂

∂x
D
∂P

∂x
(5.42)

with the initial condition P (x, t0) = δ(x−x0) that at present time t0 we have the known log
price x0

Definition 5.3.4. Vm(S) is the payoff at a maturity time Tm:

Vm(S) =

{
0 S < K

(S −K) S ≥ K

Namely, we know the strike price K, and to satisfy our call option, we want S to increase
if we are selling. Call options on materials can also be thought of in terms of insurance:
avoids paying higher than K.

• If Sm > K you will exercise your call option to buy (because you can make a return
later)

• if Sm < K your counterparty in the put option will exercise their right to sell (since
they can now make a return)

Definition 5.3.5. Suppose at some later time t ≤ tm we have established the fair value to
be V (x, t) = Vm(S = ex), i.e. it depends on the logprice x at that time. This is the future
condition.

Averaging over those future values conditional on price at time t0, the fair value at time
t0 is then

V (x0, t0) = e
−

∫ t
t0

r(t′)dt′
∫
P (x, t | x0, t0)V (x, t)dx

Provided t0 < t < tm our valuation V (x, t) should not depend on the choice of intermediate
time t, so ∂t of the RHS should be zero. This leads to

0 = ∂tV (x0, t0) = e−r(t−t0)

∫
−rPV + ∂tP + V ∂tPdx
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Figure 5.1: The value of simple options vs price S at maturity. The holder of a call (put)
option has the right to buy (sell) at the “strike” price K on the maturity date

Integrating by parts (twice) with respect to x then leads to

0 =

∫
P (x− x0, t− t0)

(
DAV +

∂V

∂t
− rV

)
dx

where the adjoint operator is given by DP with DA = ∂xD∂x + ∂x(−D + r).
The fair valuation V (x, t) depends only on the future evolution from t to maturity whereas

the factor P independently varies with conditions set at time t0. Hence we need

∂V

∂t
−DAV − rV = 0 (5.43)

for the time evolution of the option value, propagating backwards from its value Vm(x) at
maturity. Substituting DA gives

Black-Scholes equation

∂V

∂t
+ S2 ∂

∂S
D
∂

∂S
V + r

(
S
∂

∂S
− 1

)
V = 0 (5.44)

The sign of the
∂V

∂t
term in the Black-Scholes equation is important. It only makes sense

as a diffusion equation when integrating backwards in time.

Definition 5.3.6. We define τ = tm − t as the time to maturity where tm is the time of
maturity.

Therefore the Black-Scholes equation is a Fokker-Planck equation with the initial condi-
tion V (x, τ = 0) = Vm(S = ex). A graph of V against S like in Fig. 5.1 now smooths out
the corner with increasing τ .

Theorem 5.3.1. An explicit general solution of the Black-Scholes equation is of the form

V (x, τ) =

∫
G(x− xm, τ)Vm(exm , τ = 0)dxm (5.45)
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where G the Green function obeys

∂G

∂τ
= D

∂2G

∂x2
− (D − r)∂G

∂x
− rG+ δ(τ)δ(x− xm) (5.46)

with
G =

1√
4πDτ

exp

[
−(x− (xm + (D − r)τ))2

4Dτ

]
exp [−rτ ] (5.47)

where the second exponential comes from the fact that the further away we go back in time
from maturity, the more disappointed we are in our returns without interest (i.e. discount-
ing).

The drift term −(D − r) is time reversed otherwise the exponential should have a minus
sign not a plus sign.

G tells you the contribution to the value of the option from the scenario where the logprice
is xm at maturity.

We can have more exotic options:

Call option with floor If S < Sfloor option is automatically void. In Physics, this would
be implemented as a boundary condition like V = 0 at Sfloor = ex. This is set so the owner
of the share doesn’t make too huge of a loss selling the share to you.

Put option with barrier If S > Sbarrier option is automatically void. In Physics, this
would be implemented as a boundary condition like V = 0 at Sbarrier < ex. This is set so a
share price can’t get so large, otherwise no one would buy.

If you have a call option with a barrier at high price that kills the contract when you
have a large value, you don’t strictly want that because of this cap. However it makes the
share easier to sell as it is less appealing, so it is important to weigh options.

In an American/Asian option, we can exercise ANYTIME up to maturity. Exercising
early can be favourable so that there is less discounting. For the strike price, in a call option,
you pay this, so it is good to delay. For a put option, shares are received so it is nice to get
a payoff earlier.

One of the big questions is when should you exercise?. If S is far from K very early on,
you should exercise as soon as possible the further away it is, i.e. there is some locus which
decides when you should exercise your options. However, there is no closed form to this
locus.



Chapter 6

Kinetic Theory of Plasma

This section is non-examinable for 2023-24 and will be printed here at a later date.
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