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2Rabbit hole for my fellow Physicists: http://www.damtp.cam.ac.uk/user/tong/teaching.html
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1 Electromagnetism and Special Relativity

God said, “Let there be light!”
And so, there was Maxwell and his equations.
Also, Tim Gershon was there. Somehow.

1.1 Revision: The Maxwell Equations & EM Waves

Recall from PX263:

Maxwell’s Equations (in free space)

∇ ·E =
ρ

ϵ0
(M1)

∇ ·B = 0 (M2)

∇×E = −∂B
∂t

(M3)

∇×B = µ0

(
J+ ϵ0

∂E

∂t

)
(M4)

Equivalently, we can rewrite the first and fourth equation as ∇ ·D = ρ and ∇×H = J + ∂tD
respectively, where D = ϵ0E and H = B/µ0 (in free space).

Note: We will not consider dielectrics in PX3A3, thus one can always use the above relations.

Using the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A, we also obtained that in free space,

∇2E =
1

c2
∂2E

∂t2
and ∇2B =

1

c2
∂2B

∂t2

where c = 1/
√
µ0ϵ0 ≈ 3× 108 ms−1 is the speed of light in vacuum, showing that light is in fact

electromagnetic waves(!).

1.2 Revision: Energy in EM Fields and Waves

Again recalling from PX263, conservation of energy gives

∂u

∂t
+∇ · S = −E · Jf = E ·

(
∇×H− ∂D

∂t

)
= ∇ · (E×H) +H · ∂B

∂t
+E · ∂D

∂t

where we can identify S = E × H as the Poynting vector, and in linear, isotropic materials
(H = B/µ0 and D = ϵ0E), we have

∂u

∂t
=

∂

∂t

(
B2

2µ0
+
ϵ0E

2

2

)
=⇒ u =

1

2

(
B2

µ0
+ ϵ0E

2

)
For waves, we let E = E0e

i(ωt−k·r) and B = B0e
i(ωt−k·r) such that ∇ 7→ −ik and ∂t 7→ iω. The

Maxwell equations (in free space) then becomes

k ·E = 0 (1.1)

k ·B = 0 (1.2)

k×E = ωB (1.3)

k×B = − ω

c2
E (1.4)

Thus the power flow (aka energy flux ) is given by the time-averaged Poynting vector

S = E×H = EH k̂ =
E2

Z
k̂ =⇒ ⟨S⟩ = 1

2

E2
0

Z
k̂

3



with impedance Z defined as

Z =
|E|
|H|

=

√
µ0µr
ϵ0ϵr

= Z0

√
µr
ϵr

where Z0 =
√
µ0/ϵ0 ≈ 377Ω is the impedance of free space.

1.3 EM in terms of Potentials

Looking at (M2), one might define a magnetic field via

B = ∇×A (1.5)

whereA is some vector field known as themagnetic vector potential. Note that this automatically
satisfies (M2) since ∇ · (∇×A) = 0 for all vector fields (in R3)3.

Similarly, since

0 = ∇×E+
∂(∇×A)

∂t
= ∇×

(
E+

∂A

∂t

)
we can define a scalar potential4 via

E+
∂A

∂t
= −∇ϕ

Rearranging, we have

E = −∇ϕ− ∂A

∂t
(1.6)

This reduces the 6 components of E and B to the 4 components of A and ϕ!

Example 1.

Consider a uniform magnetic field

B = (0, 0, B0) = ∇×A = (∂yAz − ∂zAy, ∂zAx − ∂xAz, ∂xAy − ∂yAx)

Here, A can be B0(0, x, 0), B0(−y, 0, 0), or B0
2 (−y, x, 0). In particular, there is a freedom

to choose between different potentials for a given field (though the third one is usually
preferred for its symmetry).

Now, note that for any scalar field ψ, ∇×(∇ψ) = 0. Therefore, for any magnetic fieldB = ∇×A,

B′ = ∇× (A+∇ψ) = B

i.e. we can arbitrarily choose ψ and have B expressed in terms of A′ ≡ A+∇ψ.

However, from (1.6),

−E = ∇ϕ′ + ∂A′

∂t
= ∇ϕ′ + ∂A

∂t
+
∂(∇ψ)
∂t

Therefore, for E to remain unchanged, we require

∇ϕ′ = ∇ϕ− ∂(∇ψ)
∂t

=⇒ ϕ′ = ϕ− ∂ψ

∂t
(1.7)

3In fact, for any “physical” divergence-free vector fields (smooth in R3 with compact support, in this case a
magnetic field B), Helmholtz’s theorem guarantees that one can always define such a vector potential A.

4The existence of ϕ is again guaranteed by Helmholtz’s theorem.
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The selection of such scalar field ψ is called “choosing the gauge”, which is usually expressed in
terms of ∇ ·A. A useful choice for relativity is the Lorenz gauge56

Lorenz gauge

∇ ·A+
1

c2
∂ϕ

∂t
= 0 (1.8)

Substituting (1.6) into (M1), we get

−∇2ϕ− ∂(∇ ·A)

∂t
=

ρ

ϵ0
(1.9)

Similarly, substituting (1.5) and (1.6) into (M4), we get

−∇2A+∇(∇ ·A) +
1

c2

[
∂(∇ϕ)
∂t

+
∂2A

∂t2

]
= µ0J (1.10)

Finally, substituting the Lorenz gauge (1.8) into (1.9) and (1.10) gives

∇2ϕ− 1

c2
∂2ϕ

∂t2
= − ρ

ϵ0
(1.11)

∇2A− 1

c2
∂2A

∂t2
= −µ0J (1.12)

Defining the d’Alembertian by

□ :=
1

c2
∂2

∂t2
−∇2 (1.13)

we can rewrite the equations as

Maxwell’s Equations in terms of potentials

□ϕ =
ρ

ϵ0
and □A = µ0J (1.14)

These two equations contain all the information we had in Maxwell’s equations. In particular,
in free space (ρ = 0,J = 0), we recover wave equations for A and ϕ (□ϕ = 0 and □A = 0),
which gives a description of electromagnetic waves (of speed c, as expected).

1.4 EM Fields in Materials

Note: This is mainly PX263 revision, and serves as a clarification between E and D; it is not
particularly related to the rest of this module as we will only consider EM fields in free space.

Recall that
∇ ·E =

ρ

ϵ0
and ∇ ·D = ρfree

where
ρ = ρfree + ρp =⇒ ∇ · (ϵ0E) = ∇ ·D−∇ ·P =⇒ D = ϵ0E+P

Usually (for linear, isotropic materials), we have

P = ϵ0χE =⇒ D = ϵ0ϵrE

5NOT Lorentz, typo in Chapman’s Core Electrodynamics!
6In electrostatics this reduces to the Coulomb gauge ∇ ·A = 0 (useful for plane waves), which gives Poisson

equations for both ψ and A:

−∇2ϕ =
ρ

ϵ0
and −∇2A = µ0J
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where ϵr = 1+χ. For non-linear and/or anisotropic materials, this generalizes to the non-linear
tensor relation (Einstein notation, summing over repeated indices)

Pi = ϵ0χijEj + ϵ20χ
(2)
ijkEjEk + · · ·

Again, we (fortunately) will not consider such complications in this module as we will only be
looking at EM fields in free space.

1.5 Prelude to Special Relativity (PX148 Revision)

In 1887, Michelson-Morley disproved the existence of the aether (medium for propagation of light
waves) by improving upon the Michelson interferometer (see PX148 notes for more details). In
1892, Lorentz first derived the Lorentz Force Law

F =
dp

dt
= q(E+ v×B) (1.15)

bridging Maxwell’s EM fields to Newtonian mechanics. Later in the same year, as an attempt
to reconcile the aether with Michelson-Morley, he proposed a coordinate transformation for a
frame of reference moving at velocity v in the +x direction:

t′ = γ(t− v

c2
x)

x′ = γ(x− vt)

y′ = y

z′ = z

where he derived much later in 1903 that

γ =
1√

1− v2/c2
= (1− β2)−1/2 (1.16)

where β := v/c. However, as we know, it wasn’t until later in 1905 that Einstein provided the
correct physical interpretation for this transformation.

1.6 Special Relativity

In his paper The Electrodynamics of Moving Bodies (1905), Einstein reconciled Lorentz Trans-
formation with mechanics by introducing a new understanding of time, under which Gallilean
transformation and Newtonian mechanics work as approximations for the case v/c≪ 1.

Later in 1907, Minkowski7 coined the term spacetime (more formally the Minkowski space8), a
4-dimensional object on which events are points with coordinates

Xµ = (X0, X1, X2, X3) = (ct, x, y, z)

with indices deliberately written as superscripts to denote contravariant rank-1 tensors (vec-
tors); we shall introduce its counterpart (covariant vectors) later, where indices are written as
subscripts (e.g. Xµ).

Note that we are free to choose the origin of each axis and the orientation of the spatial axes
via a rotation matrix, typically (rotating by θ around the z-axis),

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


7Einstein’s PhD supervisor!
8Topologically R4, endowed with the Minkowski inner product v · w = η(v, w) := ηµνv

µwν .
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We can also change our frame of reference via a Lorentz Boost
ct′

x′

y′

z′

 =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


or equivalently,

X ′µ = ΛµνX
ν

where

Λ :=


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 =


coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1


with α := tanh−1 β (such that Λ looks like a rotation matrix)910.

We also define the metric distance (Minkowski norm squared)

s2 := (ct)2 − x2 − y2 − z2

which is invariant under Lorentz transformations (LT). We often consider the difference between
two events (Minkowski inner product11, aka the relativistic dot product) given by

ds2 := (cdt)2 − dx2 − dy2 − dz2

This is usually referred to as the spacetime interval, which is again Lorentz invariant. Here, the
opposite signature of time and spatial coordinates gives three cases (inside, on, and outside light
cone):

ds2 > 0: time-like interval

ds2 = 0: light-like interval

ds2 < 0: space-like interval

1.7 Introduction to 4-vectors

4-vectors represent physical quantities and respect the symmetry of spacetime, i.e. transform
according to the Lorentz Boosts. They are usually of the form

Xµ = (ct, r) = (ct, x, y, z)

Often, we denote 4-vector components with Greek indices Xµ, where µ = 0, 1, 2, 3, and reserve
Italic indices Xi, i = 1, 2, 3 for ONLY the spatial components.

In particular, the Minkowski distance is

s2 = (X0)2 − (X1)2 − (X2)2 − (X3)2

As hinted earlier, we can also define the covariant vector Xµ, where the lower indices are defined
as X0 = X0, Xi = −Xi, i.e.

Xµ = (ct,−x,−y,−z)

9α here is known as the rapidity.
10In fact, just like regular rotations (which form the special orthogonal groups SO(n)), the translations, rota-

tions and Lorentz boosts altogether form what’s known as the Poincaré group.
11Mathematical note for those who took MA251: More preciesly, the Minkowski inner product is a pseudo-

inner product, which one does not require to be positive definite, i.e. we allow η(u, v) < 0. Furthermore, the
product satisfies linearity in first argument, symmetry, and non-degeneracy (i.e. η(u, v) = 0 ∀v ∈M =⇒ u = 0);
note that the first two properties automatically imply bilinearity, hence the “inner product” is well-defined via
this (non-degenerate) symmetric bilinear form.
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Therefore, we have

Spacetime interval

s2 := XµX
µ = X0X

0 +X1X
1 +X2X

2 +X3X
3 (1.17)

where repeated indices are again summed over with the Einstein summation convention.

More generally, for any 4-vector v and w, we have the (Lorentz invariant) inner product v ·w ≡
vµw

µ = vµwµ, and again all 4-vectors a transform according to LT via

a′µ = Λµνa
ν

1.7.1 4-vector Examples

There are various useful 4-vectors one can define. For relativistic mechanics, we have

• 4-position:
Xµ = (ct, r) = (ct, x, y, z)

• 4-velocity:
Uµ = γ(c,v)

where a factor of γ is added such that UµU
µ = c2 is Lorentz invariant.

• 4-momentum:
Pµ = (E/c,p)

which is defined such that PµP
µ = E2/c2− p2, and E2 = m2c4+ p2c2 =⇒ PµP

µ = m2c2,
i.e. Lorentz invariant (m = rest mass). Note that this is consistent with the 4-velocity via

Pµ = mUµ = (γmc2/c, γmv) = (E/c,p)

We shall derive the expressions for the 4-velocity and 4-momentum more carefully later.

Furthermore, for electromagnetism, we have

• 4-current (density):
jµ = (ρc,J)

• 4-potential:
Aµ = (ϕ/c,A)

We shall also derive these expressions properly later. However, observe that since □ϕ = ρ
ϵ0

and
□A = µ0J, we have

Electrodynamics in one equation

□Aµ = µ0j
µ (1.18)
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1.8 More on Tensors

Note: If you are also a MathPhys student and find this section too handwavy, I highly recommend
David Tong’s brilliant lecture notes12 for a far more comprehensive introduction to tensors.

Tensors are usually classified in terms of their rank, which is roughly defined by the number of
spacetime indices13. Some useful examples include

• Rank 0 (scalar): ds2 = dXµdX
µ, c2 = UµU

µ

• Rank 1: 4-vectors, e.g. Xµ, Pµ, jµ, Aµ, . . .

• Rank 2: metric tensor gµν , Faraday tensor Fµν

• Rank 3: ∂λFµν

• Rank 4: antisymmetric tensor ϵαβγδ, Riemann curvature tensor Rαβγδ

All tensors must transform according to LT, e.g. F ′µν = ΛµαΛνβF
αβ.

We shall now define the metric tensor, which is given by14

Metric Tensor (Special Relativity)

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.19)

In particular, this allows us to transform between covariant and contravariant vectors, i.e.

Xµ = gµνXν and Xµ = gµνX
ν

which lets us rewrite the spcaetime interval as

ds2 = gµνX
µXν

Note: In general, the metric tensor gµν is more complicated than this (more to come in GR!).
To distinguish this “special” relativity case from the “general” case (pun intended), we often
replace gµν by

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = ηµν

12Ngl this guy just has the best lecture notes on the internet (plus they are completely free!!), could’ve probably
studied all of undergraduate Physics from his website alone if I wasn’t this lazy.

13Not everything with indices are tensors! Tensors have to transform properly under a change of coordinates.
Even in GR, we deal with Christoffel symbols (more about them in PX436 or MA3D9), which usually look
something like Γi

jk, but they do not transform like tensors under a change of coordinates, hence are not tensors.

Aside: More precisely, in differential geometry, given a smooth manifold, one may choose a coordinate basis for
the tangent vector space at a point, and consider a tensor with components that are functions of points on the
manifold. Then we can speak of the transformation law of tensors, which can be expressed explicitly in terms of
partial derivatives of the chosen coordinate functions. In our case, the Λ’s of LT are exactly the said laws:

Λµ
ν ≡ ∂xµ

∂x′ν
=⇒ a′µ =

∂xµ

∂x′ν
aν = Λµ

νa
ν

More about this in MA3H5 Manifolds (one of the most difficult third year modules imo) and PX408 Relativistic
Quantum Mechanics (only briefly mentioned here without much deeper explanation).

14Potential confusion: We use the (+ − −−) convention in this module (and for particle physics in general).
However, in other fields (e.g. GR), the (−+++) convention may be used instead, where ds2 ≡ −(ct)2+x2+y2+z2.

9
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2 Introduction to Relativistic Electrodynamics

I went to a wedding in a Faraday cage...
There was no reception.15

2.1 Relativistic Equations of Motion

A consistent set of relativistic eqautions of motion must

1. approach the Newtonian results in the classical limit v/c≪ 1; and

2. transform as 4-vectors via Lorentz transformations.

To formulate such equations, we shall first look at the proper time τ , which is the time in the
co-moving frame of our particle in question, i.e. the time measured in a frame of reference where
the particle is stationary. In this co-moving frame, the spacetime interval between two events is

ds2 = ηµνdX
µdXν = c2dτ2 − dx2τ − dy2τ − dz2τ

In particular, we have dxτ = dyτ = dzτ = 0 for the particle in this frame, so, assuming the
interval is timelike16, i.e. ds2 > 0, we have

ds2 = c2dτ2 =⇒ ds = cdτ

or equivalently,

dτ =
ds

c
(2.20)

By definition, the proper time is a scalar agreeable by all observers (Lorentz invariant).

Note that in a different frame of reference, we have

c2dτ2 = ds2 = c2dt2 − dx2 − dy2 − dz2

dτ2 = dt2
(
1− 1

c2
dx2

dt2
− 1

c2
dy2

dt2
− 1

c2
dz2

dt2

)
= dt2(1− β2)

Therefore,

Proper time

dτ =
dt

γ
(2.21)

as expected from PX148.

Now, we are ready to properly formulate the 4-velocity by

Uµ :=
dXµ

dτ

=

(
dX0

dτ
,
dX1

dτ
,
dX2

dτ
,
dX3

dτ

)
= γ

(
dX0

dt
,
dX1

dt
,
dX2

dt
,
dX3

dt

)
15Credit to Crentist the-Dentist from Reddit r/Jokes.
16This is always true for a physical particle travelling inside the light cone (ignoring so-called “tachyons”,

which are now commonly interpreted as instabilities in quantum fields rather than particles doomed to travel on
space-like trajectories anyway).
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i.e.

4-Velocity

Uµ = γ(c,v) (2.22)

where we differentiated position against τ to ensure UµU
µ = c2 is observer-independent17.

Similarly, we define the 4-momentum18by

Pµ := mUµ = γm(c,v) = (γmc2/c, γmv)

i.e.

4-Momentum

Pµ = (E/c,p) (2.23)

To define the 4-force

fµ :=
dPµ

dτ
= γ

(
dP 0

dt
,
dp

dt

)
Note that

Uµf
µ = Uµ

d

dτ
(mUµ) = mUµ

dUµ

dτ
=
m

2

d

dτ
(UµU

µ) = 0

In particular,

0 = U0f0 − (U1f1 + U2f2 + U3f3) = γcf0 − γv · γF =⇒ f0 =
γ

c
(v · F)

Therefore,

4-Force

fµ = γ

(
v · F
c

,F

)
= γ

(
1

c

dE

dt
,F

)
(2.24)

Looking at the Newtonian work done relationship dE/dt = F · v, the 4-force we obtained from
the 4-momentum does somehow resemble what’s expected classically.

17Derivation: UµU
µ = γ2(c2 − v2) = (1− β2)−1(1− β2)c2 = c2

18Similarly, this is defined such that PµP
µ = γ2m2(c2 − v2) = m2c2 is oberserver-independent.
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2.2 Relativistic EM Forces and the Faraday Tensor

To use our new 4-vectors, we will need a relativistic form of the Lorentz Force Law. Substituting
1.15 into 2.24, and using 2.22, we get19

f0 =
γ

c
(v · F) = qγ

c
(v ·E+ v · (v×B)) =

q

c
(U1Ex + U2Ey + U3Ez)

f1 = γFx = γq(Ex + vyBz − vzBy) = q

(
U0Ex

c
+ U2Bz − U3By

)
f2 = γFx = γq(Ey + vzBx − vxBz) = q

(
U0Ey

c
+ U3Bx − U1Bz

)
f3 = γFx = γq(Ez + vxBy − vyBx) = q

(
U0Ez

c
+ U1By − U2Bx

)
Putting all together, we have

fµ = qFµνU
ν (2.25)

where Fµν is the Faraday Tensor (aka Electromagnetic Tensor), which is a rank-2 tensor

Fµν :=


0 Ex/c Ey/c Ez/c

Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0


with µ and ν indexing the rows and columns respectively, e.g. F 1

2 = Bz.

Usually, one uses either the (fully) contravariant form or the (fully) covariant form, i.e.

Faraday/Electromagnetic Tensor

Fµν = ηνβFµβ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 (2.26)

Fµν = ηµαηνβF
αβ =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 (2.27)

In particular, note that Fµν and Fµν are fully antisymmetric, i.e. Fµν = −F νµ and Fµν = −Fνµ.
Note also that the matrices all consist of a time-like block (0th row and column) of electric field
entries, and a space-like block (bottom-right 3× 3 matrix) of magnetic field entries.

With these new forms, one usually writes the relativistic Lorentz Force Law as

Relativistic Lorentz Force Law

fµ = qFµνUν or fµ = qFµνU
ν (2.28)

19We also used the vector identity a · (a× b) = 0
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2.3 Motion in Simple EM Fields

Now, using 2.25, we have

fµ =
dPµ

dτ
= m

dUµ

dτ
=⇒ dUµ

dτ
=

q

m
FµνU

ν (2.29)

This is simply an eigenvalue problem of the form

du

dτ
=Mu

which has general solution

u =
∑
λ

Aλe
λτeλ

where λ and eλ are the eigenvalues and corresponding eigenvectors of M respectively. We shall
now try and solve 2.29 under different (boundary) conditions.

Case 1: Uniform E-field; E = (E, 0, 0), B = 0

The Faraday Tensor is

Fµν = ηνβF
µβ =


0 E/c 0 0
E/c 0 0 0
0 0 0 0
0 0 0 0


which has eigenvalues λ = 0 (repeated) and ±E/c, with eigenvectors (0, 0, 0, 1), (0, 0, 1, 0),
(1, 1, 0, 0), and (1,−1, 0, 0) respectively. In particular, our general solution is

Uµ = Aeaτ


1
1
0
0

+Be−aτ


1
−1
0
0

+ C


0
0
1
0

+D


0
0
0
1


where a = qE/mc.

Assuming20 vx(τ = 0) = 0, we have A = B. Furthermore, from U0(τ = 0) = γ0c = A + B, we
have A = B = γ0c/2. Therefore,(

γc
γvx

)
=

(
U0

U1

)
= γ0c

cosh
(
qE
mcτ

)
sinh

(
qE
mcτ

)
In particular, γ changes with time via

γ(τ) = γ0 cosh

(
qE

mc
τ

)
and so

vx(τ) =
U1

γ(τ)
= c tanh

(
qE

mc
τ

)
This should make sense since

lim
τ→∞

|vx(τ)| = c · lim
x→±∞

|tanh(x)| = c

as is expected for a relativistic accelerator.

20We can always do this by changing reference frames. In particular, we shall later see that Lorentz Transforma-
tions leave the parallel components E∥ and B∥ unchanged, thereby justifying our (Lorentz boosted) calculations.
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Using this, one can also find the coordinate time t via

dt = γ(τ)dτ =⇒ t =

∫ t

0
γ(τ)dτ ∝ sinh

(
qE

mc
τ

)
Now, for the transverse velocities vy and vz, note that

U2 = γ(τ)vy(τ) = C =⇒ vy(τ) =
C

γ(τ)

and similarly,

U3 = γ(τ)vz(τ) = D =⇒ vz(τ) =
D

γ(τ)

Therefore, perhaps surprisingly, the transverse velocities decrease as the particle accelerates!
But of course, this is expected as

P 2 = γmvy =
γmC

γ
= mC and P 3 = γmvz =

γmD

γ
= mD

i.e. the transverse momtenta are conserved (C and D are just constants).

Case 2: Uniform B-field; E = 0,B = (B, 0, 0)

The Faraday Tensor is

Fµν =


0 0 0 0
0 0 0 0
0 0 0 B
0 0 −B 0


So, U0 and U1 are constant. Also,

• U0 = γc =⇒ γ = constant =⇒ |v| = constant =⇒ Energy is conserved; and

• U1 = γvx =⇒ velocity along the direction of B, vx, remains constant.

This time, Fµν has eigenvalues 0 (repeated) and ±iB, with eigenvectors (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, i) and (0, 0, 1,−i) respectively. This has general solution

Uµ = A′


1
0
0
0

+B′


0
1
0
0

+ Ceiωτ


0
0
1
i

+De−iωτ


0
0
1
−i


where ω = qB/m is the Larmor frequency. In particular, assuming21 vz(τ = 0) = 0, we have
C = D, and we can write(

U2

U3

)
= A

(
cos(ωτ)
− sin(ωτ)

)
= A

(
sin(ωτ + ϕ)
cos(ωτ + ϕ)

)
where A = C +D, and a phase ϕ is added for generality.

In particular, this results in helical motion around the x-axis, with ω(t) = ω(τ)/γ.

Case 3: Crossed E and B fields; E = (0, Ey, 0),B = (0, 0, Bz)

The Faraday Tensor is

Fµν =


0 0 Ey/c 0
0 0 Bz 0

Ey/c −Bz 0 0
0 0 0 0


21We can always do this by choosing the +z direction to be perpendicular to v(τ = 0).
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Clearly, Uµ = (c, Ey/Bz, 0, 0) is an eigenvector with eigenvalue 0, and is therefore a steady-state
solution for 2.29. In particular, we have

vx =
Ey
Bz

with overall motion perpendicular to both E and B. This is known as the Hall drift.
Aside: More generally, Hall drift occurs whenever E ·B = 0, with vd = E ·B/B2.

2.4 Lorentz Transformation of Tensors

Rank-0 tensors (scalars):

Scalars are trivially invariant, i.e. they are the same in all reference frames.

Rank-1 tensors (vectors):

In this module, we consider 4-vectors which transform according to LT via

X ′µ = ΛµνX
ν

with the Lorentz boost in the +x-direction given by

Λµν =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1


Rank-2 tensors (matrices):22

The Lorentz Transformation generalizes easily to higher-rank tensors. For example, we looked
at the Faraday Tensor, which transforms according to LT via

F ′µν = ΛµαΛ
ν
βF

αβ

More explicitly, suppose we want to find E′
x for a particle travelling along the x-direction. Then

E′
x

c
= F ′10 = Λ1

µΛ
0
νF

µν = Λ1
0(Λ

0
0F

00 + Λ0
1F

01) + Λ1
1(Λ

0
0F

10 + Λ0
1F

11)

= −βγ
(
0 + βγ

Ex
c

)
+ γ

(
γ
Ex
c

+ 0

)
= (1− β2)γ2 · Ex

c
=
Ex
c

So, E′
x = Ex, i.e. the parallel component of E remains unchanged.

Similarly, we have

E′
y

c
= F ′20 = Λ2

µΛ
0
νF

µν = Λ2
2(Λ

0
0F

20 + Λ0
1F

21) =
γEy
c

− βγBz

and
E′
z

c
= F ′30 = Λ3

µΛ
0
νF

µν = Λ3
3(Λ

0
0F

30 + Λ0
1F

31) =
γEz
c

+ βγBy

In particular, observe that

E′
y = γ(Ey − vxBz) = γ[E+ v×B]y

E′
z = γ(Ez + vxBy) = γ[E+ v×B]z

Now, for magnetic fields, we have

B′
x = F ′32 = Λ3

µΛ
2
νF

µν = Λ3
3Λ

2
2F

32 = Bx

22Note: Matrices are fundamentally different from rank-2 tensors, they are merely a convenient representation
we use in this module (and in most other circumstances)!
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So, the parallel component of B remains unchanged.

Similarly,

B′
y = Λ1

µΛ
3
νF

µν = Λ1
0F

03 + Λ1
1F

13 =
βγEz
c

+ γBy

and

B′
z = Λ2

µΛ
1
νF

µν = Λ1
0F

20 + Λ1
1F

21 = −βγEy
c

+ γBz

Again, we can rewrite these expressions as

B′
y = γ

[
B− v×E

c2

]
y

and B′
z = γ

[
B− v×E

c2

]
z

To summarize, we have

Lorentz Transformation of E and B

E′
∥ = E∥ (2.30)

B′
∥ = B∥ (2.31)

E′
⊥ = γ (E⊥ + v×B) (2.32)

B′
⊥ = γ

(
B⊥ − v×E

c2

)
(2.33)

An important consequence of this is quantities that are frame invariant (aka Lorentz invariants).

Theorem 1. The dot product E ·B is frame invariant.

Proof. WLOG, assume v = (v, 0, 0), which we are allowed to as spatial rotations always leave
dot products unchanged (this has nothing to do with Lorentz Transformations).

E′ ·B′ = E′
xB

′
x + E′

yB
′
y + E′

zB
′
z

= ExBx + γ2(Ey − vBz)

(
By +

vEz
c2

)
+ γ2(Ez + vBy)

(
Bz −

vEy
c2

)
= ExBx + EyByγ

2(1− β2) + EzBzγ
2(1− β2) = E ·B

Alternatively, we can also consider the determinant∣∣∣Fµ′ν′∣∣∣ = ∣∣∣Λµ′µΛν′νFµν∣∣∣ = ∣∣∣Λµ′µ∣∣∣ ∣∣∣Λν′ν ∣∣∣ |Fµν |
Since

∣∣∣Λµ′µ∣∣∣ = ∣∣∣Λν′ν ∣∣∣ = (1 − β2)γ2 = 1, we have
∣∣∣Fµ′ν′∣∣∣ = |Fµν |. Therefore, the determinant of

Fµν is Lorentz invariant. One can then show that

det(Fµν) =
1

c2
(E ·B)2

i.e. E ·B is Lorentz invariant.

As we can see, this is tedious work. We had to somehow know to calculate E·B at the first place,
then hope that things work out as above, or grind through the determinant of a 4×4 matrix. A
more useful way would be to find invariants (scalars) directly from the electromagnetic tensor,
which we shall demonstrate below.

Theorem 2. B2 − E2/c2 is frame invariant.
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Proof. We simply use the fact that tensor products with all indices contracted (i.e. scalars) are
frame invariant. In particular,

FµνFµν = 2(B2
x +B2

y +B2
z )− 2

(
E2
x

c2
+
E2
y

c2
+
E2
z

c2

)
= 2

(
B2 − E2

c2

)

2.4.1 Aside: The Dual Electromagnetic Tensor

The same idea can be used to prove the invariance of E ·B, but requires the introduction of the
dual electromagnetic tensor23, which is defined as24

Aside: The dual electromagnetic tensor F̃µν

F̃µν :=
1

2
ϵµνρσFρσ =


0 −Bx −By −Bz
Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

 (2.34)

Note that F̃µν arises from Fµν by the substitution E 7→ cB and B 7→ −E/c. Furthermore, the
fact that F̃µν is a tensor (and not just a matrix) means that it also transforms nicely under
Lorentz Transformations, with

F̃ ′µν = ΛµρΛ
ν
σF̃

ρσ

Taking the obvious square of F̃ gives25

F̃µνF̃µν =
1

4
ϵµνρσϵµναβF

αβFρσ

=
1

4

(
−2! δρσαβ

)
FαβFρσ

= −1

2

(
δραδ

σ
β − δρβδ

σ
α

)
FαβFρσ

= −1

2

(
FαβFαβ − FαβFβα

)
= −FαβFαβ

So, we get nothing new. Of course, the next most natural thing to do26 is to contract F̃ with
our original F , giving

F̃µνFµν = −4

c
(E ·B)

and voilá! We have shown for the third time that E · B is Lorentz invariant, this time with a
much more elegant and powerful tool, i.e. by contracting tensors into scalars.

23See p.112 of David Tong’s lecture notes on electromagnetism.
24F̃µν is sometimes also written as ⋆Fµν . This alternative (in fact more common) notation comes from the

fact that ⋆Fµν is the so-called Hodge dual of the Faraday tensor Fµν (whatever this means).
25We can derive F̃µν with the usual raising and lowering of indices (try this yourself!):

F̃µν = ηµαηνβF̃
αβ =

1

2
ηµαηνβϵ

αβγτ (ηγρητσF
ρσ) =

1

2
ϵµνρσF

ρσ

26If we look closer, the fact that F̃µν has the word dual in its name does suggest us to perform this operation.
For the mathematicians among us physics peasants, see this Wikipedia article on how tensor contraction actually
arises from the natural pairing of a vector space and its dual.
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2.5 Four-gradients

For a general scalar field ψ(ct, x, y, z), its differential is given by

dψ =
∂ψ

∂(ct)
d(ct) +

∂ψ

∂x
dx+

∂ψ

∂y
dy +

∂ψ

∂z
dz =

4∑
µ=0

∂ψ

∂Xµ
dXµ

With dψ on the LHS being a scalar (since it has no indices), we must have ∂ψ
∂Xµ as a covariant

4-vector such that all indices are contracted with dXµ. In particular, we define the covariant
4-derivative by

Covariant 4-gradient

∂µ :=

(
∂

∂(ct)
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
1

c

∂

∂t
,∇
)

(2.35)

As usual, we can then raise the indices to get the contravariant 4-derivative

Contravariant 4-gradient

∂µ = ηµν∂ν =

(
1

c

∂

∂t
,−∇

)
(2.36)

Notice here that the contravariant 4-gradient has negative spatial components, as opposed to
its covariant counterpart (as is the case for other 4-vectors, e.g. Xµ = (ct,−r)).

Furthermore, the d’Alembertian operator is now automatically frame invariant, since

∂µ∂
µ =

1

c2
∂2

∂t2
−∇2 ≡ □

With these 4-gradients, we can simplify much of the equations we have seen earlier using 4-
vectors. For example, we have

Euler’s (charge continuity) equation

∂µj
µ =

∂ρ

∂t
+∇ · J = 0 (2.37)

Consider now the inhomogeneous Maxwell’s equations. We can rewrite (M1) as

∇ ·
(
E

c

)
=
ρ/ϵ0
c

∂F 00

∂X0
+
∂F 10

∂X1
+
∂F 20

∂X2
+
∂F 30

∂X3
= µ0(ρc)

∂µF
µ0 = µ0j

0

and looking at (M4):

∇×B− 1

c2
∂E

∂t
= µ0J

we can rewrite the x-, y-, and z-components of the equation as

∂Bz
∂y

− ∂By
∂z

+
∂(Ex/c)

∂t
=
∂F 21

∂X2
+
∂F 31

∂X3
+
∂F 01

∂X0
= µ0j

1

∂Bx
∂z

− ∂Bz
∂x

+
∂(Ey/c)

∂t
=
∂F 32

∂X3
+
∂F 12

∂X1
+
∂F 02

∂X0
= µ0j

2

∂By
∂x

− ∂Bx
∂y

+
∂(Ex/c)

∂t
=
∂F 13

∂X1
− ∂F 23

∂X2
+
∂F 03

∂X0
= µ0j

3

18



Combining everyting, we get

Inhomogeneous Maxwell’s equation

∂µF
µν = µ0j

ν (2.38)

Similarly for the homogeneous Maxwell equations, from (M2), we have

0 = −∇ ·B =
∂(−Bx)
∂x

+
∂(−By)
∂y

+
∂(−Bz)
∂z

= ∂1F23 + ∂2F31 + ∂3F12

and from (M3):
1

c

(
∇×E+

∂B

∂t

)
= 0

we can again rewrite the x-, y-, and z-components separately as

∂(Ez/c)

∂y
− ∂(Ey/c)

∂z
+
∂Bx
∂(ct)

= ∂2F03 + ∂3F20 + ∂0F32 = 0

∂(Ex/c)

∂z
− ∂(Ez/c)

∂x
+
∂By
∂(ct)

= ∂3F01 + ∂1F30 + ∂0F31 = 0

∂(Ey/c)

∂x
− ∂(Ex/c)

∂y
+
∂Bz
∂(ct)

= ∂1F02 + ∂2F10 + ∂0F21 = 0

Summarizing these, we have the so-called Bianchi Identity

Bianchi Identity

∂αFβγ + ∂βFγα + ∂γFαβ = 0 (2.39)

or equivalently as
∂[αFβγ] = 0

where [...] stands for anti-symmetrization of any groups of indicies, i.e. for a rank-n tensor T ,

T[12···n] :=
1

n!
ϵi1i2···inTi1i2···in

In our case of three indices, it reads

∂[αFβγ] ≡
1

3!
ϵαβγ∂αFβγ =

1

6
(∂αFβγ + ∂βFγα + ∂γFαβ − ∂αFγβ − ∂βFαγ − ∂γFβα)

and we recover (2.39) using the fact that F is antisymmetric, i.e. Fµν = −Fνµ.

In fact, we can define the Faraday tensor alternatively as follows27:

Faraday tensor in terms of the 4-potential

Fµν := ∂µAν − ∂νAµ (2.40)

where Aµ is of course the usual (covariant) 4-potential Aµ = (ϕ/c,−A). Notice that Fµν (and
therefore Fµν) is then antisymmetric by definition.

27Mathematically, the 4-potential, A, is known as a differential 1-form. F is then defined as the exterior
derivative of A, i.e. F := dA, or in terms of local coordinates, Fµν = (dA)µν = ∂µAν − ∂νAµ (as defined above),
which is therefore a differential 2-form. Again, more about this in MA3H5 Manifolds.
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One can easily check that this definition of Fµν is indeed consistent with our previous matrix
definitions via direct calculation. For example,

F12 =
∂A2

∂X1
− ∂A1

∂X2
=
∂(−Ay)
∂x

− ∂(−Ax)
∂y

= −[∇×A]z = −Bz

Bianchi’s identity (and hence the homogeneous Maxwell Equations) now follows automatically:

∂αFβγ + ∂βFγα + ∂γFαβ

= (∂α∂βAγ − ∂α∂γAβ) + (∂β∂γAα − ∂β∂αAγ) + (∂γ∂αAβ − ∂γ∂βAα)

= ∂α∂βAγ − ∂α∂γAβ + ∂β∂γAα − ∂α∂βAγ + ∂α∂γAβ − ∂β∂γAα

= 0

So far, we have been rewriting Maxwell’s equations using the 4-gradient and the Faraday tensor,
which are all gauge-independent. In particular, substituting our new definition (2.40) into the
inhomogeneous Maxwell’s equation (2.38), we get

Gauge independent Maxwell’s equations

µ0j
ν = ∂µ(∂

µAν − ∂νAµ) = □Aν − ∂ν(∂µA
µ) (2.41)

However, notice that if we choose the Lorenz gauge, i.e.

∂µA
µ ≡ 1

c

∂ϕ

∂t
+∇ ·A = 0

Maxwell’s equations can be elegantly summarized as

Maxwell’s equations in the Lorenz gauge

□Aµ = µ0j
µ (2.42)

Noice!
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3 Narnia™: The Dipole, the Antenna & the Retarded Potential

“All shall be done, but it may be harder than you think.”
— C.S. Lewis, Narnia: The Lion, the Witch and the Wardrobe;
— also me on How to Pass the PX3A3 Exam.

3.1 Moving Charges and the Retarded Potential

We first consider the electrostatic setting of a point charge q located at r0. Recall from PX120
that the charge generates an electric field given by

E(r) =
q

4πϵ0 |r− r0|2
r− r0
|r− r0|

or equivalently, a scalar electrostatic potential

V (r) =
q

4πϵ0 |r− r0|

For multiple charges, we simply sum over all constituents, giving

V (r) =
∑
i

qi
4πϵ0 |r− ri|

We can also integrate over a continuous region of charges with

V (r) =
1

4πϵ0

∫
dr′

ρ(r′)

|r− r′|

where ρ(r′) is the charge density at r’.

Now, this is all well and good, but what if the charges are moving instead? We might reasonably
expect V to have the form

V (t, r) =
1

4πϵ0

∫
dr′

ρ(t, r′)

|r− r′|
i.e. the potential now depends on time due to the time-dependence of ρ.

But what should the time t here be in this case? Naturally, we want t to be the time at which
we, the observer makes a measurement in our own frame of reference. However, since radiation28

from the electric field travels at a finite speed c, the speed of light (in vacuum), the charges we
measure were actually generated by the source at time t′ = t− |r− r′| /c.

We define this as the retarted time

Retarted time

tR := t− |r− r′|
c

(3.43)

In particular, ρ depends on tR, the retarded time, NOT t, the time of measurement. That is,
for moving charges, the generated electric potential is given by

V (t, r) =
1

4πϵ0

∫
dr′

ρ(tR, r
′)

|r− r′|
(3.44)

28Some justification for why radiation comes up here: Recall that radiation is merely some fluctuation in the
electric and magnetic fields (aka EM waves). With time-varying charges/currents, we have a time-varying E-field,
and can reasonably expect the generation of a B-field (e.g. by Lenz’s Law). In other words, we have radiation,
which must travel (in vacuum) with speed c due to Special Relativity. More on this in the next few sections.
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In fact, solving Maxwell’s equations29 in the Lorenz gauge □Aµ = µ0j
µ, or separately as

□ϕ =
ρ

ϵ0
and □A = µ0J

we get the very similar looking retarded potentials

ϕ(t, r) =
1

4πϵ0

∫
dr′

ρ(tR, r
′)

|r− r′|
(3.45)

A(t, r) =
µ0
4π

∫
dr′

J(tR, r
′)

|r− r′|
(3.46)

which combines into a 4-potential as

Retarted potential

Aµ =
µ0
4π

∫
dr′

[jµ]

|r− r′|
(3.47)

where the square brackets mean that we evaluate jµ using r’ and the retarded time tR, i.e.

[jµ] = jµ(ctR, r
′)

instead of the regular 4-position Xµ = (ct, r) (as is the case for Aµ). Intuitively, this potential
should make sense if we compare it to the form of V (t, r) as derived in (3.44).

3.2 4-potential from a Hertzian Dipole

As hinted above, one important consequence of the 4-potential retardation is the emission of
radiation from time-dependent charges, as we shall see below.

Consider a pair of opposite oscillating point charges ±q(t) situated with distance b apart, or
more precisely, with a displacement vector b = bẑ, i.e. we align the dipole along the +z-axis.
This is commonly set up in, say, radio antennae using some AC current I(t).

The dipole moment p (with origin set at the midpoint of the two charges) is given by

p(t) = q(t)b

which varies in time as
ṗ = q̇b = I(t)b

Now, if we assume |r| ≫ λ ≫ b, where λ is the wavelength of radiation, we then have |r| ≫
|r′|, and can therefore approximate r’ and hence, tR to be uniform across the dipole. Dipoles
satisfying this assumption are known as Hertzian dipoles (sometimes also short dipoles).

Therefore, the vector potential can be approximated as

A(t, r) =
µ0
4π

∫
dr′

J(tR, r
′)

|r− r′|
≈ µ0

4πr

∫
dr′ [J] =

µ0ẑ

4πr

∫ b/2

−b/2
dz [I] =

µ0[I]b

4πr
ẑ =

µ0[ṗ]

4πr
ẑ

where r := |r|. This is called the electric dipole approximation.

As for the scalar potential, we have

ϕ(t, r) =
1

4πϵ0

∫
dr′

ρ(tR, r
′)

|r− r′|
=

1

4πϵ0

[
q(tR, r1)

|r− r1|
+
q(tR, r2)

|r− r2|

]
29This can be done by introducing appropriate Green functions. For more details, see J.D.Jackson Classical

Electrodynamics, Second Edition, Section 6.6, p.223 (please don’t, it really is just 4 pages of painful maths).
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Labelling R+ := |r− r1| and R− := |r− r2| as the distances from the respective charges to point
r, this becomes

ϕ(t, r) =
1

4πϵ0

q
(
t− R+

c

)
R+

+
−q
(
t− R−

c

)
R−


If we denote the angle between r and b as θ (such that r · b = cos θ), then

R± =

∣∣∣∣r∓ b

2

∣∣∣∣ = (r2 ∓ r · b+
b2

4

)1/2

= r ± r · b
2

+O(b2) ≈ r ∓ b

2
cos θ

where we assumed b≪ r as before. Therefore,

q

(
t− R±

c

)
= q

(
t− r

c
± b cos θ

2c

)
≈ q

(
t− r

c

)
± b cos θ

2c
q̇
(
t− r

c

)
Hence, we can write

ϕ(t, r) =
1

4πϵ0

(
q + b cos θ

2c q̇

r − b
2 cos θ

−
q − b cos θ

2c q̇

r + b
2 cos θ

)
=

1

4πϵ0

(
b cos θ
c q + rb cos θ

c q̇

r2 − b2

4 cos2 θ

)

≈ 1

4πϵ0

(
b cos θ
c q + rb cos θ

c q̇

r2

)
=

1

4πϵ0r

(
qb

r
+
q̇b

c

)
cos θ =

1

4πϵ0r

(
p

r
+
ṗ

c

)
cos θ

Now, with the dipole oscillating with some frequency ω, such that

p = p0e
iωtR

We have (only considering the real parts of p and ṗ)

ṗ = ωp =⇒ ṗ

c
=
ω

c
p =

2π

λ
p = 2π

( r
λ

)
· p
r

With the far field approximation, i.e. r ≫ λ, this implies

ṗ

r
≫ p

r

Therefore,

ϕ(t, r) =
[ṗ] cos θ

4πϵ0rc
=⇒ ϕ(t, r)

c
=
µ0[ṗ]

4πr
cos θ

Finally, combining everything into a 4-potential, we have

4-potential from a Hertzian dipole

Aµ =
µ0[ṗ]

4πr
(cos θ, ẑ) (3.48)

where as before, [ṗ] := ṗ(t− r/c).

Remark 1. Note that since [ṗ] = ω[p] ∝ eiωtR , we have Aµ ∝ eiω(t−r/c)/r, which geometrically
are just outgoing spherical waves with a decaying amplitude ∝ 1/r.

Remark 2. As shown in the derivation, this 4-potential ONLY holds for Hertzian dipoles in
the far field approximation, i.e. we require the assumption r ≫ λ≫ b.
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3.3 Radiation from a Hertzian Dipole

Now that we have the 4-potential, the corresponding EM fields can be found easily using (2.40).

In spherical coordinates, defining r̂ · ẑ = r̂ · b̂ = cos θ as before, we have ẑ = (cos θ,− sin θ, 0),
and the 4-gradient becomes

∂µ =

(
1

c

∂

∂t
,−∇

)
=

(
1

c

∂

∂t
,− ∂

∂r
,−1

r

∂

∂θ
,− 1

sin θ

∂

∂ϕ

)

Therefore, noting that [p̈] = ω[ṗ] and ∂[ṗ]/∂r = −ω[ṗ]/c, we have

∂0Aν =
1

c

µ0ω[ṗ]

4πr
(cos θ, cos θ,− sin θ, 0)

∂1Aν =
µ0
4π

(
[ṗ]

r2
+
ω[ṗ]

cr

)
(cos θ, cos θ,− sin θ, 0)

∂2Aµ =
µ0[ṗ]

4πr2
(sin θ, sin θ, cos θ, 0)

∂3Aµ = 0

or equivalently,

∂µAν =
µ0[ṗ]

4πr

ωc

cos θ cos θ − sin θ 0
cos θ cos θ − sin θ 0
0 0 0 0
0 0 0 0

+
1

r


0 0 0 0

cos θ cos θ − sin θ 0
sin θ sin θ cos θ 0
0 0 0 0




Now, since λ≪ r, we have
ω

c
=

2π

λ
≫ 1

r

so the first matrix dominates in the far field approximation. Hence,

Fµν = ∂µAν − ∂νAµ

=
µ0ω[ṗ]

4πrc



cos θ cos θ − sin θ 0
cos θ cos θ − sin θ 0
0 0 0 0
0 0 0 0

−


cos θ cos θ 0 0
cos θ cos θ 0 0
− sin θ − sin θ 0 0

0 0 0 0




=
µ0[p̈]

4πrc


0 0 − sin θ 0
0 0 − sin θ 0

sin θ sin θ 0 0
0 0 0 0


Indentifying this matrix with

0 −Er/c −Eθ/c −Eϕ/c
Er/c 0 Bϕ Bθ
Eθ/c Bϕ 0 −Br
Eϕ/c −Bθ Br 0

 ≡ Fµν =
µ0[p̈]

4πrc


0 0 − sin θ 0
0 0 − sin θ 0

sin θ sin θ 0 0
0 0 0 0


we see that in spherical coordinates, a Hertzian dipole generates the following EM fields30:

30More precisely, whenever we speak of “Radiation Fields”, we are referring to fields in the limit r ≫ λ
(alongside the usual λ≫ b for Hertzian dipoles), as shown here.
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(a) 3D distribution of dipole radiation (b) Radiation pattern in the y-z plane

Figure 1: Radiation pattern of a Hertzian dipole31

Radiation from a Hertzian dipole

Eθ =
µ0[p̈]

4πr
sin θ (3.49)

Bϕ =
µ0[p̈]

4πrc
sin θ (3.50)

Er = Eϕ = 0 (3.51)

Br = Bθ = 0 (3.52)

Notice that the fields are mutually orthogonal with E/B = c, so we indeed have radiation as
expected. Furthermore, recall that the Poynting vector for electromagnetic radiation is defined
as

S := E×H = E× B

µ0

Therefore, we have that for radiation from a Hertzian dipole,

S =
1

µ0

µ20[p̈]
2

(4πr)2c
sin2 θ (θ̂ × ϕ̂) =

µ0[p̈]
2

(4πr)2c
sin2 θ r̂

Observe the angle dependence of S: It has maximum magnitude when θ = π/2, and minimum
magnitude when θ = 0 or π (with Pmax/2 at θ = π/4). In particular, since S represents the
directional energy flux (aka power flow) of an electromagnetic field, the radiation is concentrated
around the (x-y) plane perpendicular to the dipole moment p ≡ pẑ (see Figure 1).

To quantify this angular dependence of radiated power, we define the directivity D as

Directivity

D :=
Maximum radiated power

Average radiated power
(3.53)

31Images taken from Photonics 101 (this website also comes with a rather handy and comprehensive introduc-
tion to electrodynamics).
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We can first compute the total power radiated by simply integrating over some spherical surface
of radius r, i.e.

Ptotal(t) =

∫
sphere

S · dA

=

∫ 2π

ϕ=0

∫ π

θ=0

µ0[p̈]
2

(4πr)2c
sin2 θ r̂ · (r2 sin θdθdϕr̂)

=
µ0[p̈]

2

(4π)2c

∫ 2π

ϕ=0
dϕ

∫ π

θ=0
dθ sin3 θ

=
µ0[p̈]

2

(4π)2c
· 2π ·

[
1

3
cos3 θ − cos θ

]π
0

=
µ0[p̈]

2

6πc

Then, the average power will be given by the total power divided by 4πr2. In particular, we
have the directivity

D =
Pmax
Pavg

=
µ0[p̈]

2

(4πr)2c

/[
1

4πr2

(
µ0[p̈]

2

6πc

)]
=

3

2

It is often useful to also include the angular dependence of S explicitly in the so-called angular
gain. In this case, the angular gain is

G(θ, ϕ) =
3

2
sin2 θ

Furthermore, assuming p to be sinusoidal (e.g. if it is of the form p = p0e
iωt as before), then

⟨p̈⟩ = ω2⟨p⟩ = ω2p0/
√
2

Hence, the total time-averaged power is

Total time-averaged power from dipole radiation

⟨Ptotal⟩ =
µ0⟨[p̈]2⟩
6πc

=
µ0ω

4p20
12πc

∝ 1

λ4
(3.54)

The key takeaway here is that ⟨Ptotal⟩ ∝ ω4 ∝ λ−4. In particular, the radiation is skewed heavily
towards shorter wavelengths. This leads to the infamous Rayleigh scattering !

3.4 Rayleigh Scattering: Blue Skies and Red Sunsets

Due to incoming solar radiation, diatomic molecules in the atmosphere (e.g. N2, O2) experience
an oscillatory electric field, which induces molecular dipoles of the form

p(t) = αE(t)

for some constant α ∈ R. From above, we know that the molecules in turn give out radiation with
a time-averaged power ⟨P ⟩ ∝ λ−4. That is, incoming sunlight of all wavelengths are scattered,
but shorter wavelengths are scattered more strongly, hence Mr. Blue Sky™!323334

32Absolute banger from the Electric Light Orchestra (ELO), a band quite fittingly named for this module :)
33But why isn’t the sky violet? The Sun, like every other star, has its own radiation spectrum, in this case the

intensity peaks at around 500nm (green) and falls off in the violet region (as seen from, e.g. Wien’s displacement
law). Additionally, oxygen in the Earth’s atmosphere absorbs photons of near-ultraviolet wavelengths. The
resulting colour, which appears pale blue, is therefore a mixture of all the scattered colours (mainly blue and
green).

34A fun fact: In locations with little light pollution, the moonlit night sky is also blue since moonlight is just
reflected sunlight. The moonlit sky is not perceived as blue, however, because at low light levels, human vision
comes mainly from rod cells which do not produce any colour perception (this is knows as the Purkinje effect).
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Figure 2: Rayleigh scattering in opalescent glass36

During sunsets, due to the oblique angle, we see the sun through a much larger and denser
proportion of the atmosphere near the Earth’s surface, in which Rayleigh scattering removes a
significant proportion of the shorter wavelength (blue/green) light from the direct path to the
observer. The remaining unscattered light is therefore mostly of longer wavelengths, i.e. we get
red sunsets. Note that this is also why we can safely look at sunsets directly in the first place
— the sun’s intense radiation is much attenuated by scattering along the way.

Aside: Interestingly, Rayleigh-type ∝ λ−4 scattering can also be demonstrated using nanoporous
materials35, e.g. scattered light in a piece of opalescent glass makes the glass appear blue from
the side, while longer-wavelength orange light shines through (see Figure 2).

3.5 The Short Dipole Antenna

As mentioned before, electric dipoles are commonly found in antennae, and are easily set up by
passing through an AC current I(t) from the centre of the dipole to two nearby points (forming
the two opposite “point charges”).

More specifically, suppose we have a current given by

I(tR) = I0 sin(ωtR)

Then, with dipole moment p = q(tR)b ẑ =⇒ ṗ = I(tR)b ẑ, we have

p̈(tR) =
dI

dtR
b ẑ = ωI0b cos(ωtR) ẑ = 2πc

(
b

λ

)
I0 cos(ωtR) ẑ

where we note that b≪ λ =⇒ b/λ≪ 1 for Hertzian dipoles.

From above, we know that this antenna generates radiation with an average power of

⟨Prad⟩ =
µ0⟨[p̈]2⟩
6πc

= µ0
4π2c2

6πc

(
b

λ

)2

⟨I20 cos2(ωtR)⟩ =

[
2π

3

(
b

λ

)2

Z0

]
I2rms

where I2rms ≡ ⟨I20 sin2(ωtR)⟩ = ⟨I20 cos2(ωtR)⟩, and Z0 = µ0c =
√
µ0/ϵ0 ≈ 377Ω is the impedance

of free space.

35In this case, the strong scattering is due instead to the large difference in refractive index between pores and
solid parts within the material.

36Image (along with a long discussion on why the sky is blue) found on https://www.flickr.com/photos/

optick/112909824/
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Relating this to the usual power of an electrical circuit P = I2R, we define a new quantity
known as the radiation resistance, given by

Rrad :=
⟨Prad⟩
⟨I2⟩

This is a so-called effective resistance. Unlike conventional (Ohmic) resistance, radiation resis-
tance is not due to the resistivity of the imperfect conducting materials the antenna is made of,
but rather due to the power carried from the antenna as radiation (usually as radio waves).

For dipole antennae, we have

Radiation resistance of a dipole antenna

Rrad =
⟨Prad⟩
⟨I2⟩

=
2π

3

(
b

λ

)2

Z0 (3.55)

We can also speak of an antenna’s radiation efficiency

η :=
Prad
Pin

=
Rrad

Rrad +ROhm

where ROhm is the Ohmic resistance of the antenna. So, for an efficient (high η) antenna, we
want Rrad ≫ ROhm.

Example 2.

For a short dipole with b = 1cm, λ = 1m (∼ 300 MHz), we have

Rrad =
2π

3

(
1

100

)2

(377) ≈ 80mΩ

To radiate 1W of power, we require a driving current of

I =
P

R2
rad

=
1

0.082
≈ 156A

Notice here how the low Rrad of Hertzian dipoles requires antennae to draw impractically
high currents. In practice, we use longer antennae to increase Rrad, though this does
mean that our original b≪ λ assumption will no longer hold.

3.6 A Longer Antenna: The Half-Wave Dipole Antenna/Aerial

Suppose now we have a longer dipole, i.e. we remove the assumption that b≪ λ (while keeping
the far field approximation r ≫ λ). In this case, the retarded time tR is no longer uniform across
the dipole, but rather given by

tR(z) = t− r − z cos θ

c

where z is the relative height of a point on the antenna from the centre of the dipole. Further-
more, by requiring that I → 0 at z = ±b/2 (due to the physical configuration of the wire), the
current varies along the antenna (along ẑ) as

I(tR, z) = I0 cos
(πz
b

)
eiωtR = I0 cos

(πz
b

)
exp

[
iω

(
t− r − z cos θ

c

)]
for some maximum current I0.
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Figure 3: Radiation pattern of a half-wave dipole (solid line) vs a Hertzian dipole (dashed line)37

The retarded potential (with r ≫ b) is then given by

Aµ(t, r) =
µ0
4π

∫ +b/2

−b/2
dz

I(tR, z)

|r − z cos θ|

=
µ0I0
4πr

∫ +b/2

−b/2
dz cos

(πz
b

)
exp

[
iω

(
t− r − z cos θ

c

)]
=
µ0I0
4πr

exp
[
iω
(
t− r

c

)]
F (θ)

where

F (θ) :=

∫ +b/2

−b/2
dz cos

(πz
b

)
exp

(
iω
z cos θ

c

)
=

cos
(
πb
λ cos θ

)
− cos

(
πb
λ

)
sin2 θ

For the half-wave dipole (HWD), we choose b = λ/2 such that

F (θ) =
cos
(
π
2 cos θ

)
sin2 θ

Substituting this gives a radiation field of

Eθ = cA sin θ = c
µ0I0
4πr

cos
(
π
2 cos θ

)
sin2 θ

exp
[
iω
(
t− r

c

)]
Hence, we get a radiated power of

P ∝ E2 ∝

[
cos
(
π
2 cos θ

)
sin2 θ

]

We can also compute the directivity of a half-wave dipole via

DHWD =
Pmax
Pavg

=
4π∫∫

dθdϕ
cos(π

2
cos θ)

sin2 θ
sin θ

≈ 1.66 > 1.5 = DHertzian

Plotting out the radiation pattern of both the HWD and the Hertzian dipole (see Figure 3)
confirms that radiation from the HWD is indeed more focused radially (along the x-y plane).

37Image taken from https://commons.wikimedia.org/wiki/File:L-over2-rad-pat.svg
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