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1 Partial Derivatives

1.1 Notation

Partial derivatives denote a derivative of a function (or functions) of more than one variable with respect
to a single variable. The notation is as follows

lim
dx→0

f(x+ dx, y, z, ...)− f(x, y, z, ...)

dx
=

(
∂f

∂x

)
y,z,...

(1)

If it is clear which variables are kept constant, we drop the brackets and the lower index and have just ∂f
∂x .

1.2 Second Order Derivatives

For partial derivatives of higher orders, similar rules as for total derivatives follow

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
(2)

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
(3)

But, the most used theorem in partial differentiation, which is now presented, tells us

∂2f

∂x∂y
=

∂2f

∂y∂x
(4)

This means that it does not matter in which order are the partial derivatives taken, the resultant function
is always the same.

1.3 Total Differential

The total differential of function f is the change of this f with respect to all possible variables, i. e.

df(x1, x2, ..., xN ) =

N∑
i=1

∂f

∂xi
dxi (5)

Hence the total derivative of f with respect to one of these variables is

df

dxj
=

N∑
i=1

∂f

∂xi

dxi
dxj

=
∂f

∂xj
+

N∑
i 6=j

∂f

∂xi

dxi
dxj

(6)

1.4 Inexact differentials

We defined how to get the total differential from a certain function. However, not expressions of form∑
i aidxi have a corresponding function f for which df =

∑
i aidxi. Such expressions are called inexact

differentials, and are often denoted as d̄f . There is a simple way to test whether a differential is exact or
inexact if its form is known. If the differential is exact, then

df =

N∑
i

aidxi =

N∑
i

∂f

∂xi
dxi

And due to equation (4)

∀i :

 N∏
j 6=i

∂

∂xj

 ai =

 N∏
j 6=i

∂

∂xj

 ∂f

∂xi
=

∂Nf

∂x1∂x2...∂xi−1∂xi+1...∂xN∂xi
=

∂Nf

∂x1...∂xN
(7)

But, since the expression is independent of i, it is the same expression for each coefficient. Therefore,
the differential is exact if and only if the partial derivative of a coefficient of dxi with respect to all other
variables is the same for all dxi.
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1.5 Chain Rule

Further remark is to be made about the total differential. It might be the case that the total change can
be expressed as both function of several variables ( which are somehow handy to use) and just a single
variable (which is a bit problematic to use). Such situation often occurs when integrating in spaces that
are subspaces of the integration space - integrating over lines in planes, over lines in spaces, over planes in
spaces etc.
Lets now take the example of integrating over line. We can parametrize the line by single parameter s -
the distance along the line from a certain point. Then, in a plane, x = x(s) and y = y(s). And therefore

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂x

dx

ds
ds+

∂f

∂y

dy

ds
ds

df

ds
=
∂f

∂x

dx

ds
+
∂f

∂y

dy

ds
(8)

Similarly, if f = f(x1, x2, ..., xN ) and ∀i : xi = xi(s1, s2, ..., sM )

df =

N∑
i=1

∂f

∂xi
dxi =

N∑
i=1

∂f

∂xi

M∑
j=1

∂xi
∂sj

dsj

df

dsk
=

N∑
i=1

∂f

∂xi

M∑
j=1

∂xi
∂sj

dsj
dsk

(9)

and so on. For mutually orthogonal variables
dsj
dsk

= δjk, where δjk is the Kronecker delta

df

dsk
=

N∑
i=1

∂f

∂xi

∂xi
∂sk

(10)

2 Scalar Multivariable Calculus

2.1 Directional Derivatives

The gradient of a scalar function of several variables is defined as

∇f =
∑
i

∂f

∂xi
x̂i (11)

where xi are components in the cartesian coordinate system and x̂i is the unit vector of the cartesian
coordinate system. The directional derivative of f along direction defined by vector ~u is

∇uf = ∇f · û = ∇f · ( ~u
|~u|

) (12)

In order to translate gradient into different coordinate systems, it is sufficient to apply the chain rule

∇ =
∑
i

x̂i
∂

∂xi
=
∑
i

x̂i(ŝ1, ŝ2, ...)
∑
j

∂sj
∂xi

∂

∂sj
(13)

where sj and ŝj are coordinates and unit directions, respectively, in the new coordinate system. We than
only need to now inverse transformations of the coordinate system and unit directions.

2.2 Laplacian

Laplacian (or Laplace’s operator) ∇2 is a differential operator of form (in cartesian coordinate system)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(14)

It is a scalar operator - returns a scalar from a scalar function. It has a vector alternative, which has form

∇2 ~f = ∇2fxx̂+∇2fy ŷ +∇2fz ẑ (15)

where fi is the component of ~f in î direction.
Forms for Laplacian in other coordinate systems can be calculated directly by applying the chain rule twice
and keeping track of derivative order, but are not stated here, as the form is calculated later on from the
vector differential operators.
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2.3 Integral elements

Commonly in integration, we integrate over certain volume or surface or line. The integration elements (dV ,
dS and dl) are best determined geometrically in most cases, but there is a direct way, using the Jacobian
matrix.
Jacobian matrix is defined as

J =


∂x1

∂s1
∂x1

∂s2
... ∂x1

∂sN
∂x2

∂s1
∂x2

∂s2
... ∂x2

∂sN
... ... ... ...
∂xM
∂s1

∂xM
∂s2

... ∂xM
∂sN

 (16)

We will consider one cases - square J.
For square J, we might want to transfer the integral from cartesian dxdy to dsdt, or dxdydz to dsdtdu.
This is done by

dS = dxdy = ||J||dsdt (17)

where ||J|| is the absolute value of the determinant of the Jacobian matrix between (x, y) in rows and (s, t)
in columns. Similarly

dV = dxdydz = ||J||dsdtdu (18)

The line integration is substitution is best understood geometrically - element of length dl is the Euclidian
sum of dx and dy:

dl =
√
dx2 + dy2 = dx

√
1 +

(
dy

dx

)2

(19)

where x is the coordinate in some direction and y is the corresponding coordinate on the line.
Now follows list of surface/volume/line elements in several coordinate systems.

2.3.1 Polar Planar Coordinates

In polar planar coordinates, the position of point P is given by its distance from the origin r and angle φ
between the line connecting P and origin and the x axis. In previous years, we have shown that

x = r cos(φ)

y = r sin(φ)

êr = cos(φ)̂i+ sin(φ)ĵ

êφ = − sin(φ)̂i+ cos(φ)ĵ

Hence we see that the unit vectors are orthogonal.
Polar planar coordinates have only one surface element to consider - element in the plane. One side of the
element corresponds to change in coordinate r and has length dr, second component corresponds to change
in φ coordinate and has length rdφ. Hence, the size of the element is dS = rdrdφ. There is no volume
element to consider.
The line element here can be in two general directions. First is the line element in the increasing r direction,
with length dr. So, the element is d~l = drêr. The second line element is along the azimuthal direction
(direction of increasing φ). This has length rdφ, and therefore is d~l = rdφêφ.
Both the surface element and line elements are indicated in the Fig. 1.
In the Jacobian formalism

J =

(
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

)
=

(
∂(r cos(φ))

∂r
∂(r cos(φ))

∂φ
∂(r sin(φ))

∂r
∂(r sin(φ))

∂φ

)
=

(
cos(φ) −r sin(φ)
sin(φ) r cos(φ)

)
|J| = r cos2(φ) + r sin2(φ) = r

as expected.
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Figure 1: Line and surface elements in the planar polar coordinates. Circles k and k′ are the contours of
constant r, lines p and p′ are contours of constant φ. The line elements are indicated. The surface element
has magnitude of the product of lengths of the line elements, as the êr and êφ vectors are perpendicular to
each other.

2.3.2 Hyperbolic coordinates

Here, I am using the definition used for the first time in lectures. It shows that for the second time in
lectures and anywhere on the internet, the definitions of this coordinate system are always different. I only
include these as an illustration of the principles used before.
In hyperbolic coordinates, the position of point P is determined by two coordinates, which satisfy following
relations

y

x
= t

yx = s

The contours of t are lines, the contours of s are hyperbolae (hence the name of the coordinate system). To
find unit vectors, we take the small change of the position vector ~r with small change in s or t coordinate,
respectively.
For s coordinate (keeping t constant)

d~r = d~rs = ~r(s+ ds, t)− ~r(s, t)

This situation is represented in Fig. 2.

Figure 2: Change of the position vector upon changing the s and t variable by small amounts ds and dt,
respectively. Lines p and p′ are contours of t and t+ dt, hyperbolae h and h′ are contours of s and s+ ds.
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Point P has coordinates x and y, which translate into s and t, as we defined. To find the inverse transforms,
we note that y = tx. Therefore

tx2 = s

x =

√
s

t

y = tx =
√
st

For point Ps, the relations are
ys
xs

= t

ysxs = s+ ds

Hence, we can find that again ys = txs, and hence

tx2
s = s+ ds

xs =

√
s+ ds

t
=

√
s

t

√
1 +

ds

s
= x

√
1 +

ds

s

ys =
√
st

√
1 +

ds

s
= y

√
1 +

ds

s

The vector d~rs is then

d~rs = (xs − x)̂i+ (ys − y)ĵ = x

(√
1 +

ds

s
− 1

)
î+ y

(√
1 +

ds

s
− 1

)
ĵ

Because ds is small

d~rs ≈ x
ds

2s
î+ y

ds

2s
ĵ =

ds

2s
~r

The magnitude of the change in ~r is then

|d~rs| =
ds

2s
|~r| = ds

2s

√
x2 + y2 =

ds

2s

√
s

t
+ st

And the unit vector of s direction is then

ês =
d~rs
|d~rs|

=
~r

|~r|
=

√
s
t√

s
t + st

î+

√
st√

s
t + st

ĵ =
1√

1 + t2
î+

1√
1 + 1

t2

ĵ

Similarly for the change in t, the coordinates of Pt are

yt
xt

= t+ dt

yt = (t+ dt)xt

ytxt = s

(t+ dt)x2
t = s

xt =

√
s

t+ dt
=

√
s

t

√
t

t+ dt
= x

√
1

1 + dt
t

yt =
√
s(t+ dt) =

√
st

√
1 +

dt

t
= y

√
1 +

dt

t

d~rt = (xt − x)̂i+ (yt − y)ĵ = x

(√
1

1 + dt
t

− 1

)
î+ y

(√
1 +

dt

t
− 1

)
ĵ

Again, because dt is small

d~rt ≈ x

(√
1− dt

t
− 1

)
î+ y

dt

2t
ĵ ≈ x−dt

2t
î+ y

dt

2t
ĵ

7
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The magnitude is

|d~rt| =
dt

2t

√
x2 + y2 =

dt

2t
|~r| = dt

2t

√
s

t
+ st

And the unit vector is

êt =
d~rt
|d~rt|

=
−
√

s
t√

s
t + st

î+

√
st√

s
t + st

ĵ = − 1√
1 + t2

î+
1√

1 + 1
t2

ĵ

The magnitude of the surface element dS is given by the magnitude of the vector product of these two
vectors, d~rs and d~rt. Since they both lie in the xy plane, the only component of the vector product will be
in the direction of z. It will be

dS = |d~rs × d~rt| = |(d~rs)x(d~rt)y − (d~rs)y(d~rt)x| =∣∣∣∣xds2s
y
dt

2t
− y ds

2s

(
−xdt

2t

)∣∣∣∣ =

∣∣∣∣2xyds2s

dt

2t

∣∣∣∣ =

∣∣∣∣sdsdt2st

∣∣∣∣ =

∣∣∣∣dsdt2t

∣∣∣∣ =

∣∣∣∣ 1

2t

∣∣∣∣ dsdt
In the Jacobian formalism

J =

(
∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

)
=

(
∂(
√

s
t )

∂s

∂(
√

s
t )

∂t
∂(
√
st)

∂s
∂(
√
st)

∂t

)
=

(
1

2
√
st

−
√
s

2
√
t3√

t
2
√
s

√
s

2
√
t

)

|J| = 1

2
√
st

√
s

2
√
t
−
√
t

2
√
s

(
−
√
s

2
√
t3

)
=

1

4t
+

1

4t
=

1

2t

and hence

dS = dxdy = ||J||dsdt =

∣∣∣∣ 1

2t

∣∣∣∣ dsdt
which is what we expected.

2.3.3 Cylindrical coordinates

Cylindrical coordinates are extension of the polar coordinates to 3D. They do this by simply adding the
cartesian z coordinate to the radial and azimuthal coordinate.

Figure 3: Surface elements in cylindrical coordinates in directions of unit vectors. The unit vectors in
cylindrical coordinates are the same as in planar polar plus the cartesian k̂ vector.

There are three surface elements to consider in the cylindrical coordinates. First is the element in the
direction of the radial vector (in the direction means that the normal vector of the surface element is in
certain direction). One edge of the element has length dz, second edge has length rdφ. Hence, the element

8
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itself has surface area dS1 = rdφdz (all unit vectors are orthogonal, as êr and êφ are orthogonal, as we have

already shown, and they are both orthogonal to êz = k̂).

The second surface element, d~S2, is in the azimuthal direction, and has size dS2 = drdz.
The last element has direction of k̂ and size dS3 = rdrdφ.
The volume element is the volume of the parallelopiped created by these surface elements, which is given
by the size of one of the surface elements multiplied by the length of the line element in the remaining
direction (surface element is given by two directions). So

dV = dS1dr = rdrdφdz = dS2rdφ = dS3dz

2.3.4 Spherical Coordinates

In spherical coordinates, point P is given by its distance from the origin r and two angles. First angle φ is
the angle between plane A and the x axis, where plane A is a plane perpendicular to xy plane that contains
the point P . Second angle θ is the angle between the line L, connecting the origin and P , and the z axis.
The illustration is in the Fig. 4

Figure 4: First surface element in spherical coordinates

The transform to cartesian coordinates is as follows.

~r = r cosφ sin θî+ r sinφ sin θĵ + r cos θk̂

The unit vector in the direction of change of φ is

êφ =
d~rφ
|d~rφ|

=
~r(r, φ+ dφ, θ)− ~r(r, φ, θ)

|d~rφ|
=
−r sinφ sin θdφî+ r cosφ sin θdφĵ + 0k̂√

r2 sin2 φ sin2 θ + r2 cos2 φ sin2 θdφ
=

=
−r sinφ sin θî+ r cosφ sin θĵ

r
√

sin2 θ(sin2 φ+ cos2 φ)
=
r sin θ(− sinφî+ cosφĵ)

r sin θ
= − sinφî+ cosφĵ

The unit vector in the direction of change of θ is

êθ =
d~rθ
|d~rθ|

=
r cosφ cos θdθî+ r sinφ cos θdθĵ − r sin θdθk̂

rdθ
√

cos2 φ cos2 θ + sin2 φ cos2 θ + sin2 θ
= cosφ cos θî+ sinφ cos θĵ − sin θk̂

Importantly
êφ · êθ = − sinφ cosφ cos θ + cosφ sinφ cos θ + 0 = 0

which means that these unit vectors are perpendicular. Finally

êr =
d~rr
|d~rr|

=
dr cosφ sin θî+ dr sinφ sin θĵ + dr cos θk̂

dr
√

cos2 φ sin2 θ + sin2 φ sin2 θ + cos2 θ
= cosφ sin θî+ sinφ sin θĵ + cos θk̂

êr · êφ = cosφ sin θ(− sinφ) + sinφ sin θ cosφ+ 0 = 0

9
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êr · êθ = cosφ sin θ cosφ cos θ + sinφ sin θ sinφ cos θ + cos θ(− sin θ) = cos θ sin θ(cos2 φ+ sin2 φ− 1) = 0

Hence all unit vectors are mututally perpendicular.
Therefore, the surface first surface element with direction of êr has area

dS1 = r sin θdφrdθ = r2 sin θdθdφ

The other two surface elements are along the two remaining directions - êφ and êθ. d~S2 along êφ has size

dS2 = drrdθ = rdrdθ, d~S3 along êθ has size dS3 = drr sin θdφ = r sin θdrdφ.
We can determine the size of the volume element again from the size of dS1 and change in the perpendicular
direction, which is dr. Therefore

dV = r2 sin θdrdθdφ

2.4 Pappus’ Theorems

Pappus’ theorems are connected to integrals of revolution - calculating surfaces and volumes of objects
formed by full rotation of some curve/surface around a solid axis. The basic idea is to split the volume into
layers that form cylinders with different radii and common axis.

Figure 5: Illustration for infinitesimal cylinder formed by revolution of some function y(x) around the x
axis.

To find the surface area of the object, we need to integrate over all small cylindrical surfaces, which are
created by line elements of function y between x and x+ dx. This line element has length

ds =
√

(dy)2 + (dx)2 = dx

√
1 +

(
dy

dx

)
So the cylindrical surface has area

2πyds = 2πy

√
1 +

(
dy

dx

)2

dx

And the area is

S = 2π

∫ h

0

y

√
1 +

(
dy

dx

)2

dx = 2π

∫ l

0

yds

where l is the total length curve y. This resembles a centroid integral in 1D.
Centroid integral can be described as

ȳ =

∫
V
ydV∫

V
dV

=

∫
V
ydV

V
(20)

10
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where V is some volume and y is some coordinate. In our 1D case

ȳ =

∫
l
yds

l
=

∫ l
0
yds

l

So our integral for surface becomes
S = 2πlȳ (21)

where ȳ is the 1D centroid of the line y and l is the length of the line y. This is called Pappus’ first
theorem.
To find the volume of the created object, we integrate over all the volume elements in cylindrical coordinates.
This gives us

V =

∫ h

0

∫ y

0

∫ 2π

0

rdφdrdx

This can be reordered as

V =

∫ 2π

0

dφ

∫ h

0

∫ y

0

rdrdx

But, the inner integral has a familiar form. Centroid ȳ in 2D is a point defined by

ȳ =

∫∫
S
ydS∫∫
S
dS

where S is some surface and y is some coordinate. Hence, in our case

r̄ =

∫ h
0

∫ y
0
rdrdx∫ h

0

∫ y
0
drdx

=

∫ h
0

∫ y
0
rdrdx∫ h

0
ydx∫ h

0

∫ y

0

rdrdx = r̄

∫ h

0

ydx

And therefore

V =

∫ 2

0

πr̄

∫ h

0

ydxdφ = 2πr̄

∫ h

0

ydx = 2πr̄A (22)

where r̄ is the 2D centroid of the area under the curve y, A is the area under y. This is called the
second Pappus’ theorem.

3 Differential Vector Calculus

3.1 Differential Operators

Following are the definitions and basic forms of several differential operators. Important notice is that each
operator can be viewed as independent of certain coordinate system - the coordinate system only gives the
operator some specific form. I usually start with cartesian form and then try to derive other forms as well.

3.1.1 Gradient

Gradient is a differential operator on a scalar function. As such, we know how to transform it into different
coordinate system.

Cartesian coordiantes Gradient in cartesian coordinates is simply

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z
(23)

11
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Cylindrical coordinates The cylindrical coordinates follow

x = r cosφ

y = r sinφ

Hence the inverse transforms from cylindrical to cartesian coordinates are

r =
√
x2 + y2 (24)

φ = tan−1
(y
x

)
(25)

The unit vectors in direction of r and φ are

êr = cosφî+ sinφĵ

êφ = − sinφî+ cosφĵ

Hence the inverse transforms of unit directions are

î = cosφêr − sinφêφ (26)

ĵ = sinφêr + cosφêφ (27)

Hence, the gradient operator is (as ∂z
∂x = ∂z

∂y = 0)

∇f = î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z
=

= (cosφêr − sinφêφ)

(
∂r

∂x

∂f

∂r
+
∂φ

∂x

∂f

∂φ

)
+ (sinφêr + cosφêφ)

(
∂r

∂y

∂f

∂r
+
∂φ

∂y

∂f

∂φ

)
+ k̂

∂f

∂z

From the inverse transforms

∂r

∂x
=
∂(
√
x2 + y2)

∂x
=

1

2
√
x2 + y2

2x =
x√

x2 + y2

From the forward transforms
x√

x2 + y2
=
r cosφ

r
= cosφ

So ∂r
∂x = cosφ. Similarly

∂r

∂y
= sinφ

∂φ

∂x
=
∂
(
tan−1

(
y
x

))
∂x

=
1

1 + y2

x2

−y
x2

=
−y

y2 + x2
=
− sinφ

r

∂φ

∂y
=

cosφ

r

So, we have

∇f = (cosφêr − sinφêφ)

(
cosφ

∂f

∂r
− sinφ

r

∂f

∂φ

)
+ (sinφêr + cosφêφ)

(
sinφ

∂f

∂r
+

cosφ

r

∂f

∂φ

)
+ k̂

∂f

∂z

Now, I will group together the parts containing êr

(∇f)r = cos2 φ
∂f

∂r
− sinφ cosφ

r

∂f

∂φ
+ sin2 φ

∂f

∂r
+

sinφ cosφ

r

∂f

∂φ
=
∂f

∂r

Similarly for other directions

(∇f)φ = − sinφ cosφ
∂f

∂r
+

sin2 φ

r

∂f

∂φ
+ sinφ cosφ

∂f

∂r
+

cos2 φ

r

∂f

∂φ
=

1

r

∂f

∂φ

(∇f)z =
∂f

∂z
Hence, in cylindrical coordinates

∇f =
∂f

∂r
êr +

1

r

∂f

∂φ
êφ +

∂f

∂z
k̂ (28)

12
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Spherical coordinates In spherical coordinates, following relations apply

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ

The inverses are
r =

√
x2 + y2 + z2 (29)

φ = tan−1
(y
x

)
(30)

θ = tan−1

(√
x2 + y2

z

)
(31)

The unit direction vectors are

êr = cosφ sin θî+ sinφ sin θĵ + cos θk̂

êφ = − sinφî+ cosφĵ

êθ = cosφ cos θî+ sinφ cos θĵ − sin θk̂

The inverses are
î = cosφ sin θêr − sinφêφ + cosφ cos θêθ (32)

ĵ = sinφ sin θêr + cosφêφ + sinφ cos θêθ (33)

k̂ = cos θêr − sin θêθ (34)

Therefore, we can determine the gradient as

∇f = î

(
∂r

∂x

∂f

∂r
+
∂φ

∂x

∂f

∂φ
+
∂θ

∂x

∂f

∂θ

)
+ ĵ

(
∂r

∂y

∂f

∂r
+
∂φ

∂y

∂f

∂φ
+
∂θ

∂y

∂f

∂θ

)
+ k̂

(
∂r

∂z

∂f

∂r
+
∂φ

∂z

∂f

∂φ
+
∂θ

∂z

∂f

∂θ

)
Here

∂r

∂x
=
x

r
= cosφ sin θ

∂r

∂y
= sinφ sin θ

∂r

∂z
= cos θ

∂φ

∂x
= − sinφ

r sin θ

∂φ

∂y
=

cosφ

r sin θ

∂φ

∂z
= 0

∂θ

∂x
=

1

1 + x2+y2

z2

1

2z
√
x2 + y2

2x =
xz

(x2 + y2 + z2)
√
x2 + y2

=
cosφ sin θ cos θ

r sin θ
=

cosφ cos θ

r

∂θ

∂y
=

sinφ cos θ

r

∂θ

∂z
=

1

1 + x2+y2

z2

(
−
√
x2 + y2

z2

)
= −

√
x2 + y2

x2 + y2 + z2
= − sin θ

r

Using expressions for î, ĵ and k̂, we can group the terms by êr, êφ and êθ:

(∇f)r = cosφ sin θ

(
cosφ sin θ

∂f

∂r
− sinφ

r sin θ

∂f

∂φ
+

cosφ cos θ

r

∂f

∂θ

)
+

13
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+ sinφ sin θ

(
sinφ sin θ

∂f

∂r
+

cosφ

r sin θ

∂f

∂φ
+

sinφ cos θ

r

∂f

∂θ

)
+

+ cos θ

(
cos θ

∂f

∂r
− sin θ

r

∂f

∂θ

)
=
∂f

∂r

(∇f)φ = − sinφ

(
cosφ sin θ

∂f

∂r
− sinφ

r sin θ

∂f

∂φ
+

cosφ cos θ

r

∂f

∂θ

)
+

+ cosφ

(
sinφ sin θ

∂f

∂r
+

cosφ

r sin θ

∂f

∂φ
+

sinφ cos θ

r

∂f

∂θ

)
=

1

r sin θ

∂f

∂φ

(∇f)θ = cosφ cos θ

(
cosφ sin θ

∂f

∂r
− sinφ

r sin θ

∂f

∂φ
+

cosφ cos θ

r

∂f

∂θ

)
+

+ sinφ cos θ

(
sinφ sin θ

∂f

∂r
+

cosφ

r sin θ

∂f

∂φ
+

sinφ cos θ

r

∂f

∂θ

)
− sin θ

(
cos θ

∂f

∂r
− sin θ

r

∂f

∂θ

)
=

=
1

r

∂f

∂θ

Therefore, in spherical coordinates

∇f =
∂f

∂r
êr +

1

r sin θ

∂f

∂φ
êφ +

1

r

∂f

∂θ
êθ (35)

3.1.2 Divergence

Following derivation is pretty much taken from Feynmann’s lectures on physics - I greatly recommend
reading the chapters on vector calculus.
Consider a flux of ~F from some volume V . It can be calculated as a surface integral across the boundary
of V - ∂V . It is then

Φ =

∫∫
∂V

~F · d~S (36)

where d~S is normal to the surface ∂V and pointing outwards from the surface.
Now, consider that we split the region by a plane P into two regions, V1 and V2. The boundary surfaces
of these regions consist of the part of boundary of region V (∂V ′1 and ∂V ′2 , respectively) and of the plane
of division, P . Now, consider that we want to calculate the net flux from these two regions separately. For
region V1

Φ1 =

∫∫
∂V1

~F · d~S1 =

∫∫
∂V ′1

~F · d~S +

∫∫
P

~F · d~S1

as in the integral over the boundary that coincides with boundary of V the d~S1 is identical with d~S.
For region V2

Φ2 =

∫∫
∂V2

~F · d~S2 =

∫∫
∂V ′2

~F · d~S +

∫∫
P

~F · d~S2 =

∫∫
∂V ′2

~F · d~S −
∫∫

P

~F · d~S1

as the vectors d~S1 and d~S2 must be equal and opposite on the plane of division P . Hence, the total flux

Φ =

∫∫
∂V

~F · d~S =

∫∫
∂V ′1

~F · d~S +

∫∫
∂V ′2

~F · d~S = Φ1 + Φ2 (37)

Therefore, the total flux can be found as a sum of the fluxes of separate parts of the region.
We now consider a infinitesimal region of space, and study the flux out of it in the first approximation.

14
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Figure 6: Divergence of an infinitesimal cube in cartesian coordinates

Cartesian coordinates The flux from an infinitesimal cube is approximately taking vector at each side
of the cube and multiplying its normal component by the area of the side of the cube.
The flux therefore is

dΦ = Fx(x+ dx, y, z)dydz − Fx(x, y, z)dydz + Fy(x, y + dy, z)dxdz − Fy(x, y, z)dxdz +

+ Fz(x, y, z + dz)dxdy − Fz(x, y, z)dxdy =

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
dxdydz = ∇ · ~FdV

where ∇ · ~F is called the divergence of ~F (sometimes also written as div~F ). Hence, due to (37), flux from
any volume can be written as

Φ =

∫∫∫
V

dΦ =

∫∫∫
V

∇ · ~FdV

Comparing with (36), we have Gauss’s law∫∫
∂V

~F · d~S =

∫∫∫
V

∇ · ~FdV (38)

In other coordinate systems, we define the divergence so that the Gauss’s law is met, i. e. we define it
as the flux from an infinitesimal element. The equations defining divergence in spherical and cylindrical
coordinates follow.

Cylindrical coordinates In cylindrical coordinates, the flux from infinitesimal element can be deter-
mined as follows.
Along the êr direction, the flux flows into the element from the side of with lengths rdφ and dz. The we
choose reference point for ~F at (r, φ, z). The flux out of the element in this direction is from the sidewith

lengths (r + dr)dφ and dz. The reference point here is (r + dr, φ, z). Only the r element of the ~F matters,
all other lie in the planes of the sides, and therefore do not contribute to the flux. Thus, the part of the
flux due to these two sides is

dΦr = Fr(r + dr, φ, z)(r + dr)dφdz − Fr(r, φ, z)rdφdz =

= (Fr(r + dr, φ, z)r − Fr(r, φ, z)r + drFr(r + dr, φ, z)) dφdz =

=

(
Fr(r, φ, z)r +

∂Fr
∂r

drr − Fr(r, φ, z)r + drFr(r, φ, z) + (dr)2 ∂Fr
∂r

)
dφdz

Since all changes are small, we can disregard the element of order (dr)2.
Then

dΦr ≈
(
∂Fr
∂r

r + Fr

)
drdφdz =

∂(rFr)

∂r
drdφdz =

1

r

∂(rFr)

∂r
rdrdφdz =

1

r

∂(rFr)

∂r
dV

15
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Figure 7: Divergence from small volume element in cylindrical coordinates.

Along the êφ direction, the analogous analysis leads to

dΦφ = Fφ(r, φ+ dφ, z)drdz − Fφ(r, φ, z)drdz =
∂Fφ
∂φ

drdzdφ =
1

r

∂Fφ
∂φ

rdrdφdz =
1

r

∂Fφ
∂φ

dV

And finally along the k̂ direction

dΦz = Fz(r, φ, z + dz)rdrdφ− Fz(r, φ, z)rdrdφ =
∂Fz
∂z

rdrdφdz =
∂Fz
∂z

dV

And the total flux from the small element is

dΦz =

(
1

r

∂(rFr)

∂r
+

1

r

∂Fφ
∂φ

+
∂Fz
∂z

)
dV = ∇ · ~FdV

And therefore in cylindrical coordinates

∇ · ~F =
1

r

∂(rFr)

∂r
+

1

r

∂Fφ
∂φ

+
∂Fz
∂z

(39)

Figure 8: Divergence from small volume element in spherical coordinates.
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Spherical cooridnates In spherical coordinates, we follow exactly analogous analysis

dΦr = Fr(r + dr, φ, θ)(r + dr) sin θdφ(r + dr)dθ − Fr(r, φ, θ)r sin θdφrdθ =

=

(
Fr(r, φ, θ)(r + dr)2 +

∂Fr
∂r

dr(r + dr)2 − Fr(r, φ, θ)r2

)
sin θdφdθ =

=

(
Frr

2 + 2Frrdr + Fr(dr)
2 +

∂Fr
∂r

drr2 + 2
∂Fr
∂r

r(dr)2 +
∂Fr
∂r

(dr)3 − Frr2

)
sin θdφdθ =

=

(
2Frr + Frdr +

∂Fr
∂r

r2 + 2
∂Fr
∂r

rdr +
∂Fr
∂r

(dr)2

)
sin θdrdθdφ

Since dr is small

dΦr ≈
(

2Frr +
∂Fr
∂r

r2

)
sin θdrdθdφ =

∂(r2Fr)

∂r
sin θdrdθdφ =

=
1

r2

∂(r2Fr)

∂r
r2 sin θdrdθdφ =

1

r2

∂(r2Fr)

∂r
dV

dΦθ = Fθ(r, φ, θ + dθ)r sin(θ + dθ)dφdr − Fθ(r, φ, θ)r sin θdφdr =

= Fθr(sin θ + cos θdθ)dφdr +
∂Fθ
∂θ

dθr(sin θ + cos θdθ)dφdr − Fθr sin θdφdr =

=

(
Fθ cos θ +

∂Fθ
∂θ

sin θ +
∂Fθ
∂θ

cos θdθ

)
rdθdφdr ≈

(
Fθ cos θ +

∂Fθ
∂θ

sin θ

)
rdθdφdr =

=
∂(sin θFθ)

∂θ
rdθdφdr =

1

r sin θ

∂(sin θFθ)

∂θ
r2 sin θdrdθdφ =

1

r sin θ

∂(sin θFθ)

∂θ
dV

dΦφ = Fφ(r, φ+ dφ, θ)rdθdr − Fφ(r, φ, θ)rdθdr =

(
Fφ +

∂Fφ
∂φ

dφ− Fφ
)
rdθdr =

=
∂Fφ
∂φ

rdrdθdφ =
1

r sin θ

∂Fφ
∂φ

r2 sin θdrdθdφ =
1

r sin θ

∂Fφ
∂φ

dV

And therefore

dΦ = ∇ · ~FdV =

(
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ
∂φ

dV

)
∇ · ~F =

1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ
∂φ

(40)

3.1.3 Curl

Figure 9: General case is illustrated for circular path Γ and line segment as Γp. The arrows indicate the
direction of integration.
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Consider cirulation of a vector along a certain path Γ.

C =

∮
Γ

~F · d~l

Now imagine that connect two points (A and B) of the path with intermediate path Γp. Therefore, we can
now do integrals along to paths from A to B both along parts of Γ and along the intermediate path. Lets
then do, rather arbitrarily, two closed loop integrals. One starting from A to B along the intermediate path
and then returning to A along one part of Γ, which we denote as Γ1. The second integral will start from
B to A and then return to B via second part of Γ, Γ2. This way, at points close to A and B that lie on Γ,
the integration will have the same direction.
These integrals are

I1 =

∮
(A,B,Γ1)

~F · d~l =

∫ B

A

~F · d~l +

∫
Γ1

~F · d~l

I2 =

∮
(B,A,Γ2)

~F · d~l =

∫ A

B

~F · d~l +

∫
Γ2

~F · d~l =

∫
Γ2

~F · d~l −
∫ B

A

~F · d~l

And therefore the sum of the integrals is

I1 + I2 =

∫
Γ1

~F · d~l +

∫
Γ2

~F · d~l =

∮
Γ

~F · d~l = C (41)

Therefore, the circulation over a loop can be gained by summing the circulations over constituent loops.
Important fact is that the choice of Γp is not important as long as it connects two distinct points on Γ.
We now imagine that we fill Γ with some open surface. Then, if we find the circulation of any small loop
that lies in this surface, we can find the circulation over Γ just by integrating over this surface.
There is one more important observation to be made. The circulation of an infinitesimally small loop lying
in the surface can be also calculated as a sum of over three closed loops, each of which lies in a plane normal
to a unit direction in some coordinate system. These three loops are formed by projection of our general
loop onto the planes normal to coordinate directions.

Figure 10: Decomposition of infinitesimal loop into 3 perpendicular loops. The surface vectors of these
loops are the components of the loop surface vector d~S. The circulation along the loop d~S can be obtained
as a sum of three circulations, each over separate loop d~Sx, d~Sy and d~Sz. The loops are distanced from the
original loop, in order to make image clearer.

This can be done because small step along the loop can be always decomposed into sum of three small
steps along coordinate directions, i. e.

d~l = l1ê1 + l2ê2 + l3ê3

Carrying out these three integrals along the three loops is then just decomposition of vectors. We therefore
can the circulation along each of these loops and sum it together to get circulation of the initial loop.

18



PX275 - Mathematical Methods for Physicists Formulae list and derivation

Furthermore, we can find circulations of some very small unit loops in planes perpendicular to directions of
coordinate system, and then sum their circulations, multiplied by components of d~S in different directions.
Then, we can talk about some form of unit circulation vector ~Cu, which gives circulation around a small
loop when scalar product with surface vector of this loop is taken, i.e. the small circulation dC along loop
d~S can be described as

dC = d~S · ~Cu
, where ~Cu consists of small unit loops’ circulations (loops lying in planes perpendicular to unit vectors).

We can also switch this and use unit vector in the direction of the infinitesimal loop d~S, which we denote
as n̂ and use infinitesimal unit loops for circulation d~Cu, so that

dC = n̂ · d~Cu

Cartesian coordinates In cartesian coordinates, we have 3 planes to consider, plane perpendicular to
î, to ĵ and to k̂. Lets start with the plane normal to î, in order to x component of d~Cu, which is denoted
as dCux.

Figure 11: Different unit loops in cartesian coordinate system.

To determine the direction in which we take the circulation, we will use the right hand rule - when looking
on the plane and î vector goes out of the plane, we integrate anticlockwise.
Therefore, we have four components of the circulation dCux. First is from (x, y, z) to (x, y + dy, z). We
choose the starting point as the reference point, and then approximate this component as∫ (x+dx,y,z)

(x,y,z)

~F · d~l ≈ ~F (x, y, z) · dyĵ = Fy(x, y, z)dy

The second part is from (x, y + dy, z) to (x, y + dy, z + dz).∫ (x,y+dy,z+dz)

(x,y+dy,z)

~F · d~l ≈ ~F (x, y + dy, z) · dzk̂ = Fz(x, y + dy, z)dz = Fz(x, y, z)dz +
∂Fz
∂y

dydz

The third part is from (x, y + dy, z + dz) to (x, y, z + dz)∫ (x,y,z+dz)

(x,y+dy,z+dz)

~F · d~l ≈ ~F (x, y + dy, z + dz) · (−dy)ĵ = −Fy(x, y, z)dy − ∂Fy
∂y

(dy)2 − ∂Fy
∂z

dzdy

And the last part is∫ (x,y,z)

(x,y,z+dz)

~F · d~l ≈ ~F (x, y, z + dz) · (−dz)k̂ = −Fz(x, y, z)dz −
∂Fz
∂z

(dz)2

So, the circulation is

dCux ≈
∂Fz
∂y

dydz − ∂Fy
∂y

(dy)2 − ∂Fy
∂z

dzdy − ∂Fz
∂z

(dz)2
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If we take out the factor dydz

dCux =

(
∂Fz
∂y
− ∂Fy

∂z
− ∂Fy

∂y

dy

dz
− ∂Fz

∂z

dz

dy

)
dydz

Since the unit directions are normal, dy
dz = 0 = dz

dy . Therefore, finally

dCux =

(
∂Fz
∂y
− ∂Fy

∂z

)
dSx

where dSx = dydz is the area of the unit plane perpendicular to x. Similarly, for other two directions∫ (x,y,z+dz)

(x,y,z)

~F · d~l ≈ Fz(x, y, z)dz

∫ (x+dx,y,z+dz)

(x,y,z+dz)

~F · d~l ≈ Fx(x, y, z)dx+
∂Fx
∂z

dxdz

∫ (x+dx,y,z)

(x+dx,y,z+dz)

~F · d~l ≈ −Fz(x, y, z)dz −
∂Fz
∂z

(dz)2 − ∂Fz
∂x

dxdz

∫ (x,y,z)

(x+dx,y,z)

~F · d~l ≈ −Fx(x, y, z)dx− ∂Fx
∂x

(dx)2

dCuy =

(
∂Fx
∂z
− ∂Fz

∂x

)
dSy

∫ (x+dx,y,z)

(x,y,z)

~F · d~l ≈ Fx(x, y, z)dx

∫ (x+dx,y+dy,z)

(x+dx,y,z)

~F · d~l ≈ Fy(x, y, z)dy +
∂Fy
∂x

dxdy

∫ (x,y+dy,z)

(x+dx,y+dy,z)

~F · d~l ≈ −Fx(x, y, z)dx− ∂Fx
∂x

(dx)2 − ∂Fx
∂y

dxdy

∫ (x,y,z)

(x,y+dy,z)

~F · d~l ≈ −Fy(x, y, z)dy − ∂Fy
∂y

(dy)2

dCuz =

(
∂Fy
∂x
− ∂Fx

∂y

)
dSz

We can then used identity d~S · ~Cu = n̂ · d~Cu and knowledge that d~S = dSxî+ dSy ĵ + dSz k̂ to determine

~Cu =

(
∂Fz
∂y
− ∂Fy

∂z

)
î+

(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ +

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ = ∇× ~F

Hence, the total circulation of ~F along Γ is given by∮
Γ

~F · d~l =

∫∫
S

dC =

∫∫
S

~Cu · d~S =

∫∫
S

(∇× ~F ) · d~S (42)

where S is the surface that fills Γ. This is called the Stokes’ theorem. The operation ∇× ~F is called the
curl of ~F .
Again, using the definition as vector circulations around unit small loops, we can determine the curl in
alternative coordinate systems.
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Cylindrical coordinates We start with the loop normal to radial direction. Parts of the line integral
are ∫ (r,φ+dφ,z)

(r,φ,z)

~F · d~l ≈ Fφ(r, φ, z)rdφ

∫ (r,φ+dφ,z+dz)

(r,φ+dφ,z)

~F · d~l ≈ Fz(r, φ, z)dz +
∂Fz
∂φ

dφdz

∫ (r,φ,z+dz)

(r,φ+dφ,z+dz)

~F · d~l ≈ −Fφ(r, φ, z)rdφ− ∂Fφ
∂φ

r(dφ)2 − ∂Fφ
∂z

rdφdz

∫ (r,φ,z)

(r,φ,z+dz)

~F · d~l ≈ −Fz(r, φ, z)dz −
∂Fz
∂z

(dz)2

Figure 12: Curl loops in cylindrical coordinates

Hence the sum is

(∇× ~F )rdSr =

(
1

r

∂Fz
∂φ
− ∂Fφ

∂z

)
rdφdz

(∇× ~F )r =
1

r

∂Fz
∂φ
− ∂Fφ

∂z

For φ element (∂(dSφ) denotes boundary of small surface dSφ)∮
∂(dSφ)

~F · d~l ≈

≈ Fz(r, φ, z)dz+Fr(r, φ, z)dr+
∂Fr
∂z

drdz−Fz(r, φ, z)dz−
∂Fz
∂r

dzdr− ∂Fz
∂z

(dz)2−Fr(r, φ, z)dr−
∂Fr
∂r

(dr)2 ≈

≈
(
∂Fr
∂z
− ∂Fz

∂r

)
drdz

(∇× ~F )φ =
∂Fr
∂z
− ∂Fz

∂r

And finally, for the z element (dropping explicit point denotation of point (r, φ, z))∮
∂(dSz)

~F ·d~l ≈ Frdr+Fφ(r+dr)dφ+
∂Fφ
∂r

dr(r+dr)dφ−Frdr−
∂Fr
∂r

(dr)2− ∂Fr
∂φ

dφdr−Fφrdφ−
∂Fφ
∂φ

r(dφ)2

∮
∂(dSz)

~F · d~l ≈
(
Fφ +

∂Fφ
∂r

r − ∂Fr
∂φ

)
drdφ =

1

r

(
∂(rFφ)

∂r
− ∂Fr

∂φ

)
rdrdφ
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(∇× ~F )z =
1

r

(
∂(rFφ)

∂r
− ∂Fr

∂φ

)
Hence the curl is

∇× ~F =

(
1

r

∂Fz
∂φ
− ∂Fφ

∂z

)
êr +

(
∂Fr
∂z
− ∂Fz

∂r

)
êφ +

1

r

(
∂(rFφ)

∂r
− ∂Fr

∂φ

)
êz (43)

Spherical coordinates For illustration, consider again Figure 8.
First, we start with the r component of the curl∮

∂(dSr)

~F · d~l ≈ Fθrdθ + Fφr(sin θ + cos θdθ)dφ+
∂Fφ
∂θ

dθr(sin θ + cos θdθ)dφ−

−Fθrdθ −
∂Fθ
∂θ

r(dθ)2 − ∂Fθ
∂φ

rdθdφ− Fφr sin θdφ− ∂Fφ
∂φ

r sin θ(dφ)2 ≈

≈
(
Fφ cos θ +

∂Fφ
∂θ

sin θ − ∂Fθ
∂φ

)
rdθdφ =

1

r sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
r2 sin θdθdφ

(∇× ~F )r =
1

r sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
Now, the θ component∮
∂(dSθ)

~F ·d~l ≈ Fφr sin θdφ+Frdr+
∂Fr
∂φ

drdφ−Fφ(r+dr) sin θdφ−∂Fφ
∂φ

(r+dr) sin θ(dφ)2−∂Fφ
∂r

(r+dr) sin θdφdr−

−Frdr −
∂Fr
∂r

(dr)2 ≈
(
∂Fr
∂φ
− Fφ sin θ − ∂Fφ

∂r
r sin θ

)
drdφ =

=
1

r sin θ

(
∂Fr
∂φ
− sin θ

∂(Fφr)

∂r

)
r sin θdrdφ

(∇× ~F )θ =
1

r sin θ

(
∂Fr
∂φ
− sin θ

∂(rFφ)

∂r

)
And the φ component∮
∂(dSφ)

~F ·d~l ≈ Frdr+Fθ(r+dr)dθ+
∂Fθ
∂r

(r+dr)drdθ−Frdr−
∂Fr
∂r

(dr)2− ∂Fr
∂θ

drdθ−Fθrdθ−
∂Fθ
∂θ

r(dθ)2 =

=

(
Fθ +

∂Fθ
∂r

r − ∂Fr
∂θ

)
drdθ =

1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
rdθdr

(∇× ~F )φ =
1

r

(
∂(rFθ)

∂r
− 1

r

∂Fr
∂θ

)
And therefore

∇× ~F =
1

r sin θ

(
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

)
êr +

1

r sin θ

(
∂Fr
∂φ
− sin θ

∂(rFφ)

∂r

)
êθ +

1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
êφ (44)

3.1.4 Laplacian Operator

Laplacian operator ∇2 is a scalar operator acting on a scalar function. The Laplacian operator is equal to
the divergence of a gradient of the scalar function. Using derivations above, in different coordinate systems,
we can find explicit forms of Laplacian.
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Cartesian coordinates Gradient of f is

∇f =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂

Divergence is

∇ · ~F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

And therefore the divergence of gradient is

∇2f = ∇ · (∇f) =
∂

∂x

(
∂f

∂x

)
+

∂

∂y

(
∂f

∂y

)
+

∂

∂z

(
∂f

∂z

)
=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Cylindrical coordinates The gradient is

∇f =
∂f

∂r
êr +

1

r

∂f

∂φ
êφ +

∂f

∂z
êz

The divergence is

∇ · ~F =
1

r

∂(rFr)

∂r
+

1

r

∂Fφ
∂φ

+
∂Fz
∂z

Therefore

∇2f = ∇ · (∇f) =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r

∂

∂φ

(
1

r

∂f

∂φ

)
+
∂2f

∂z2
=

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
+
∂2f

∂z2

Spherical coordinates The gradient is

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ

The divergence is

∇ · ~F =
1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ
∂φ

Therefore

∇2f = ∇ · (∇f) =
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r sin θ

∂

∂θ

(
sin θ

r

∂f

∂θ

)
+

1

r sin θ

∂

∂φ

(
1

r sin θ

∂f

∂φ

)
=

=
1

r2

∂

∂r

(
r2 ∂f

∂r

)
+

1

r2 sin θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

Sometimes, laplacian also acts on a vector. In that case, laplacian applies to each component of the vector,
i. e.

∇2 ~F = ∇2F1ê1 +∇2F2ê2 +∇2F3ê3

3.2 Operator identities

The differential operators have properties that are independent of the coordinate system we choose. In fol-
lowing section, I list some properties of the differential operators and show them in the cartesian coordinate
system, but they hold in any other coordinate system as well.

Curl/Div orthogonality Take a divergence of a curl of a vector in cartesian coordinates

∇ · (∇× ~F ) =
∂

∂x

(
∂Fz
∂y
− ∂Fy

∂z

)
+

∂

∂y

(
∂Fx
∂z
− ∂Fz

∂x

)
+

∂

∂z

(
∂Fy
∂x
− ∂Fx

∂y

)
=

=
∂2Fz
∂x∂y

− ∂2Fz
∂y∂x

+
∂2Fx
∂y∂z

− ∂2Fx
∂z∂y

+
∂2Fy
∂z∂x

− ∂2Fy
∂x∂z

= 0

∇ · (∇× ~F ) = 0 (45)
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Scalar potential Take a curl of a gradient in cartesian coordinates

∇× (∇f) =

(
∂

∂y

(
∂f

∂z

)
− ∂

∂z

(
∂f

∂y

))
î+

(
∂

∂z

(
∂f

∂x

)
− ∂

∂x

(
∂f

∂z

))
ĵ +

(
∂

∂x

(
∂f

∂y

)
− ∂

∂y

(
∂f

∂x

))
k̂

∇× (∇f) = ~0 (46)

This leads to first two identical conditions for a conservative field ~F . These conditions two conditions are
~F = ∇f and ∇× ~F = ~0, where f is the so called scalar potential.

Gradient distribution Consider a product of two scalar functions. The gradient of the product is

∇(fg) =
∂

∂x
(fg)̂i+

∂

∂y
(fg)ĵ +

∂

∂z
(fg)k̂ =

∂f

∂x
gî+ f

∂g

∂x
î+

∂f

∂y
gĵ + f

∂g

∂y
ĵ +

∂f

∂z
gk̂ + f

∂g

∂z
k̂ =

= f

(
∂g

∂x
î+

∂g

∂y
ĵ +

∂g

∂z
k̂

)
+

(
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂

)
g = f(∇g) + (∇f)g

∇(fg) = f(∇g) + (∇f)g (47)

In a special case when f is some constant c in space

∇(cg) = c∇g

Divergence distribution Consider a vector ~F that is a multiplied by scalar function f . The divergence
of this new vector is

∇·(f ~F ) =
∂(fFx)

∂x
+
∂(fFy)

∂y
+
∂(fFz)

∂z
=
∂f

∂x
Fx+

∂Fx
∂x

f+
∂f

∂y
Fy+

∂Fy
∂y

f+
∂f

∂z
Fz+

∂Fz
∂z

f = (∇f)· ~F+f(∇· ~F )

∇ · (f ~F ) = (∇f) · ~F + f(∇ · ~F ) (48)

In special case of constant vector ~C in space

∇ · (f ~C) = (∇f) · ~C

Curl distribution Consider taking curl of vector f ~F

∇× (f ~F ) =

(
∂(fFz)

∂y
− ∂(fFy)

∂z

)
î+

(
∂(fFx)

∂z
− ∂(fFz)

∂x

)
ĵ +

(
∂(fFy)

∂x
− ∂(fFx)

∂y

)
k̂ =

=

(
∂f

∂y
Fz −

∂f

∂z
Fy

)
î+ f

(
∂Fz
∂y
− ∂Fy

∂z

)
î+

(
∂f

∂z
Fx −

∂f

∂x
Fz

)
ĵ + f

(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+

+

(
∂f

∂x
Fy −

∂f

∂y
Fx

)
k̂ + f

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ = (∇f)× ~F + f(∇× ~F )

∇× (f ~F ) = (∇f)× ~F + f(∇× ~F ) (49)

Again, in special case of constant vector ~C

∇× (f ~C) = (∇f)× ~C
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Curl of curl Consider taking a curl of curl of a vector ~F

(∇× (∇× ~F ))x =
∂

∂y

(
∂Fy
∂x
− ∂Fx

∂y

)
− ∂

∂z

(
∂Fx
∂z
− ∂Fz

∂x

)
=

=
∂

∂x

(
∂Fy
∂y

+
∂Fz
∂z

)
−
(
∂2

∂y2
+

∂2

∂z2

)
Fx =

∂

∂x

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Fx

∇× (∇× ~F )y =
∂

∂z

(
∂Fz
∂y
− ∂Fy

∂z

)
− ∂

∂x

(
∂Fy
∂x
− ∂Fx

∂y

)
=

∂

∂y

(
∂Fz
∂z

+
∂Fx
∂x

)
−
(
∂2

∂z2
+

∂2

∂x2

)
Fy =

∂

∂y

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Fy

∇× (∇× ~F )z =
∂

∂x

(
∂Fx
∂z
− ∂Fz

∂x

)
− ∂

∂y

(
∂Fz
∂y
− ∂Fy

∂z

)
=

∂

∂z

(
∂Fx
∂x

+
∂Fy
∂y

)
−
(
∂2

∂x2
+

∂2

∂y2

)
Fz =

∂

∂z

(
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

)
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Fz

Therefore, we have

∇× (∇× ~F ) =

(
∂

∂x
(∇ · ~F )−∇2Fx

)
î+

(
∂

∂x
(∇ · ~F )−∇2Fy

)
ĵ +

(
∂

∂z
(∇ · ~F )−∇2Fz

)
k̂ =

= ∇(∇ · ~F )−∇2 ~F

∇× (∇× ~F ) = ∇(∇ · ~F )−∇2 ~F (50)

3.3 Position Vectors and their Time Derivatives

Position vector is a special vector that points from the origin to a point where some object is located.
The time derivative of this position vector is the velocity of the object, its second time derivative is the
acceleration.
According to the partial derivatives and total derivatives chain rule, the total time derivative of a position
vector is

d~r

dt
=

d

dt
(r1ê1 + r2ê2 + r3ê3) =

dr1

dt
ê1 + r1

d(ê1)

dt
+
dr2

dt
ê2 + r2

d(ê2)

dt
+
dr3

dt
ê3 + r3

d(ê3)

dt

The dri
dt terms have to be determined depending on the coordinate system. As unit vectors in certain

directions only depend on position and not on the time, the total time derivative for unit vector êi becomes

d(êi)

dt
=
∂(êi)

∂t
+
dr1

dt

∂(êi)

∂r1
+
dr2

dt

∂(êi)

∂r2
+
dr3

dt

∂(êi)

∂r3
=

3∑
j=1

drj
dt

∂(êi)

∂rj

Cartesian coordinates In cartesian coordiantes, position vector is determined by how far along each
unit direction the object is. It therefore has the form

~r = xî+ yĵ + zk̂

The unit vectors are independent of position and time, therefore the velocity vector is simply

~v =
d~r

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

And the acceleration vector is

~a =
d~v

dt
=
d2x

dt2
î+

d2y

dt2
ĵ +

d2z

dt2
k̂

25



PX275 - Mathematical Methods for Physicists Formulae list and derivation

Cylindrical coordinates The position in cylindrical coordinates is determined by the distance along
the êr vector and the k̂ vector, and the position vector is therefore

~r = rêr + zk̂

I will rewrite the êr vector in terms of the cartesian unit vectors, which are independent of space. Then,
the velocity vector is

~v =
d~r

dt
=
dr

dt
êr+r

d

dt

(
cosφî+ sinφĵ

)
+
dz

dt
k̂ =

dr

dt
êr+r

(
− sinφî+ cosφĵ

) dφ
dt

+
dz

dt
k̂ =

dr

dt
êr+r

dφ

dt
êφ+

dz

dt
k̂

Here, we also determined that

dêr
dt

=
dφ

dt
êφ

Similarly

~a =
d~v

dt
=
d2r

dt2
êr +

dr

dt

dφ

dt
êφ +

dr

dt

dφ

dt
êφ + r

d2φ

dt2
êφ + r

dφ

dt

dêφ
dt

+
d2z

dt2
k̂ =

=
d2r

dt2
êr +

(
r
d2φ

dt2
+ 2

dr

dt

dφ

dt

)
êφ − r

(
dφ

dt

)2

êr +
d2z

dt2
k̂ =

=

(
d2r

dt2
− r

(
dφ

dt

)2
)
êr +

(
r
d2φ

dt2
+ 2

dr

dt

dφ

dt

)
êφ +

d2z

dt2
k̂

Where I used
dêφ
dt

= −dφ
dt
êr

4 Integral Vector Calculus

4.1 Scalar difference

Consider integrating gradient of a scalar function f along some path Γ. What is the value of the integral I

I =

∫
Γ

(∇f) · d~l

In cartesian coordinates

I =

∫
Γ

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz =

∫
Γx

∂f

∂x
dx+

∫
Γy

∂f

∂y
dy +

∫
Γz

∂f

∂z
dz = f(2)− f(1) = ∆f

∆f =

∫
Γ

(∇f) · d~l (51)

where f(2) is the value of the function at the beginning of the path and f(1) is the value of the function at
the end of the path and Γi are projections of Γ into the a direction. This applies in any coordinate system.
We can therefore immidietely see that if the two points are the same, the value of the integral is zero. We
also see that the integral only depends on the end points, and not on the path taken. These two are other
two conditions for conservative fields.
The last condition that follows is that element ~c · d~r is an exact differential for conservative field ~c (follows
again from ~c = ∇f).

4.2 Green’s theorem in plane

Green’s theorem is special case of the Stoke’s theorem in 2 dimensions. Because it is purely in 2 dimensions,
we need a different way of derivation, as derivation we have done for Stoke’s theorem required 3D vector
field.
Consider we have some curve Γ which is entirely in xy plane. We integrate the vector filed in this plane
along Γ. The vector field can be desribed as

~F = Fx(x, y)̂i+ Fy(x, y)ĵ
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Figure 13: Illustration for Green’s theorem in plane, with indication of direction of integration. The red
surface is some scalar function of x and y.

The integral is

I =

∮
Γ

~F · d~l =

∮
Γ

Fxdx+

∮
Γ

Fydy

This situation is presented for a circle in Fig. 13
We now split the curve Γ with points O1 and O2 in such a way so that path Γ1 going from O1 to O2 along
Γ and Γ2 along Γ from O2 to O1 are both distinct functions of x. We suppose that the x coordinate of O1

x1 is smaller than that of O2, which is x2 (just dependent on our construction). We denote the function
that traces Γ1 as y1(x), the second one as y2(x). The first part of the integral I then becomes∮

Γ

Fxdx =

∫ x2

x1

Fx(x, y1(x))dx+

∫ x1

x2

Fx(x, y2(x))dx =

∫ x2

x1

(Fx(x, y1(x))− Fx(x, y2(x)))dx

But, Fx is simply a scalar function of two variables. The difference of such scalar function can be expressed
in form of gradient integral

∆Fx =

∫ P2

P1

(∇Fx) · d~l

where P1 and P2 are the points between which we take the difference. Taking the opposite of difference
and writing the form explicitly

−∆Fx = Fx(x1, y1)− Fx(x2, y2) =

∫ (x2,y2)

(x1,y1)

−(∇Fx) · d~l

Now, we apply this to our integral

Fx(x, y1)− Fx(x, y2) =

∫ (x,y2)

(x,y1)

−(∇Fx) · d~l =

∫ y2

y1

−(∇Fx) · (dyĵ) =

∫ y2

y1

−∂Fx
∂y

dy

∮
Γ

Fxdx =

∫ x2

x1

(−∆Fx)dx =

∫ x2

x1

∫ y2

y1

(
−∂Fx
∂y

)
dydx =

∫∫
R

−∂Fx
∂y

dS

where R is the region enclosed by Γ.
We can do similar analysis for the other part of the integral with the Fy function - we choose points O1

and O2 now in such a way that the parts of the paths are functions of y. But this time, the direction of
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integration of Γ that we choose (to satisfy the right hand rule), indicates that Γ2 part goes from O1 to O2

(in direction of increasing y) and Γ1 part goes in the opposite direction. Therefore∮
Γ

Fydy =

∫ y1

y2

Fy(x1(y), y)dy +

∫ y2

y1

Fy(x2(y), y) =

∫ y2

y1

(Fy(x2, y)− Fy(x1, y))dy =

=

∫ y2

y1

∫ x2

x1

∂Fy
∂x

dxdy =

∫∫
R

∂Fy
∂x

dS

The total integral then is∮
Γ

~F · d~l =

∮
Γ

Fxdx+

∮
Fydy =

∫∫
R

−∂Fx
∂y

dS +

∫∫
R

∂Fy
∂x

dS =

∫∫
R

(
∂Fy
∂x
− ∂Fx

∂y

)
dS

∮
Γ

~F · d~l =

∫∫
R

(
∂Fy
∂x
− ∂Fx

∂y

)
dS (52)

Notice that if ~F was 3D vector, the integrand would be just the z component of the curl of ~F - Green’s
theorem is clearly just a special case of the Stoke’s theorem.

4.2.1 Calculating Areas

If we choose a vector field in the plane such that

∂Fy
∂x
− ∂Fx

∂y
= 1

Then we have ∮
Γ

~F · d~l =

∫∫
R

(
∂Fy
∂x
− ∂Fx

∂y

)
dS =

∫∫
R

dS = SR

we can calculate the area of the region by integrating some vector field around its boundary.
Commont functions for this use are

~F = 0̂i+ xĵ

or
~F =

−y
2
î+

x

2
ĵ

This principle can be further extended into calculations of other 2D integrals. If the integrand function
can be expressed as a difference of the derivatives of the coordinates x and y, the integral can be calculated
as a vector integral around the boundary. Consider for example the moment of inertia integral for uniform
bodies.

I =

∫∫
R

r2dm = ρ

∫∫
R

r2dS

Here, r2 = x2 + y2. Can we find ~F such that

∂Fy
∂x
− ∂Fx

∂y
= x2 + y2

One such function is for example ~F = −y
3

3 î+ x3

3 ĵ. Then∫∫
R

r2dS =

∫∫
R

(
∂Fy
∂x
− ∂Fx

∂y

)
dS =

∮
Γ

~F · d~l =

∮
Γ

x3

3
dy − y3

3
dx

4.2.2 Green’s theorem in other coordinate systems

In other coordinate systems, we simply substitute for the correct component of curl in that coordinate
system. For example, in a polar planar system, the integrand in the area integral becomes the z component
of the curl in the cylindrical coordinate system. Green’s theorem then reads∮

Γ

~F · d~l =

∫∫
R

1

r

(
∂(rFφ)

∂r
− ∂Fr

∂φ

)
dS
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4.2.3 Divergence in 2D

Divergence theorem can be viewed as a consequence of Green’s theorem in plane.
The integral along the boundary Γ taking the normal component of a vector is the 2D flux out of the region∮

Γ

~F · d~n

where d~n has length of the element of the path along the boundary but is perpendicular to it. In order for
d~n to point out of the object when we are integrating according to the right hand rule, we have only one
possibility for d~n

d~n = dyî− dxĵ

Then ∮
Γ

~F · d~n =

∮
Γ

(−Fy)dx+ Fxdy =

∮
Γ

~G · d~l

where ~G = (−Fy )̂i+ Fxĵ. Due to Green’s theorem∮
Γ

~G · d~l =

∫∫
R

(
∂Gy
∂x
− ∂Gx

∂y

)
dS =

∫∫
R

(
∂Fx
∂x

+
∂Fy
∂y

)
dS

And therefore ∮
Γ

~F · d~n =

∫∫
R

(
∂Fx
∂x

+
∂Fy
∂y

)
dS (53)

4.3 Total vector surface area

Due to Stoke’s theorem, any integral along an unclosed surface can be transformed into integral along its
boundary. This suggests that for some curve we can choose any surface that spans it and the integral
should be the same for every surface.
To illustrate this, consider the total vector area of a surface. This is calculated as∫∫

S

d~S

If the surface is closed, this is definitely zero, as for every element in one direction, there is an opposite
element in the opposite direction. For an unclosed surface, the elements opposing the hole created by the
boundary do not have an opposite element - the integral is some finite vector.
Further consider that the boundary (curve) lies in a plane. Then, the only component of each d~S opposing
the boundary that does not get subtracted by some other element opposing the boundary is the element
normal to the plane the boundary lies in. Therefore, for any surface that spans this boundary, the total
vector area is given by the integral across the plane the boundary lies in.
This is also the reason behind the invariance of the Stoke’s theorem for any surface that spans any boundary.

4.4 Divergence Theorem for scalars

If we multiply a scalar function f by a constant vector ~c, the divergence theorem for this scalar still applies.
The surface integral is∫∫

∂V

f~c · d~S =

∫∫
∂V

c1fdS1 + c2fdS2 + c3fdS3 = c1

∫∫
∂V

fdS1 + c2

∫∫
∂V

fdS2 + c3

∫∫
∂V

fdS3 =

= c1î ·
∫∫

∂V

fdS1î+ c2ĵ ·
∫∫

∂V

fdS2ĵ + c3k̂ ·
∫∫

∂V

fdS3k̂ = ~c ·
∫∫

∂V

fd~S

The volume integral becomes∫∫∫
V

(∇ · (f~c))dV =

∫∫∫
V

(∇f) · ~cdV = ~c ·
∫∫

V

∇fdV

Then, due to divergence theorem

~c ·
∫∫

∂V

fd~S = ~c ·
∫∫∫

V

∇fdV
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We could have chosen any constant vector c for this calculation and it would still be correct. If we than
separately chose unit vectors of some coordinate system, we would have three equations for i ∈ {1, 2, 3}(∫∫

∂V

fd~S

)
i

=

(∫∫∫
V

∇fdV
)
i

which leaves us with ∫∫
∂V

fd~S =

∫∫∫
V

∇fdV (54)

5 Partial Differential Equations

Partial differential equations describe a behaviour of some field inside a certain medium. They usually do
so using partial derivatives of of the field with respect to space and time. In this part, I will only consider
using the solution by method of separation of variables. There are other methods, such as Green’s functions
methods (solution somewhere in certain time is dependant on solution everywhere else in previous time) or
eigenvalue methods.
The general recipe to use when using separation of variables is to start with writing the field (start with
scalar for simplicity) as a product of two or more components, each depending on one variable considered.
For example, a general wave amplitude u(t, x, y, z) is rewritten as

u(t, x, y, z) = T (t)X(x)Y (y)Z(z)

This solution is then substituted into the equation to obtain total derivatives. Then, the resultant equation
is manipulated so that on one side there is only function of one variable and on the other side the expression
is function of other variables, but not the one on the origin side.
Then, as each side is function of different variable, the only way that these two sides are equal for each
possible value of every variable is when both of these sides are together equal to some constant.
This process is then repeated several times until all variables are separated into differential equations of
one variable.
The solution is then constructed by combination of solutions for different allowed values of separation
constants. In cases mentioned here, the equations are linear and hence the combinations are simple linear
combinations.
The boundary conditions are then used to further narrow the allowed values of separation constants.
Additional constants arise from solving the several differential equations for the separated functions of one
variable, and these can be also eliminated by initial conditions or normalisation conditions.
Several different partial differential equations are now mentioned and their homogeneous solutions are
derived (without source terms).

5.1 Diffusion equation

Assume there is some concentration function of some molecules in a medium which freely diffuse. We can
guess that the molecules tend to diffuse from the more concentrated regions to the less concentrated regions.
Therefore, they flow anti-parallel to the concentration gradient. Fick’s law, which we will use further on,
assumes that there is a direct proportionality of a form

~j(x, y, z, t) = −D∇c(x, y, z, t) (55)

where D is some diffusion constant, real number greater than zero, and ~j(x, y, z, t) is the flux of the particles
through infinitesimal area at (x, y, z, t) normal to ~j per unit time. The flux of the particle out of some small
volume is then

dΦ = (jx(x, y, z, t)− jx(x+ dx, y, z, t))dydz + (jy(x, y, z, t)− jy(x, y + dy, z, t))dxdz+

+(jz(x, y, z, t)− jz(x, y, z + dz, t))dxdy = −∇ ·~jdV
The change in number of particles per some time dt is then

dN = dΦdt = −∇ ·~jdV dt

Here, dN
dV = dc is the change of concentration at (x, y, z, t) per time dt. Therefore

∂c

∂t
= −∇ ·~j
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This is a form of a continuity equation. Applying the Fick’s law now gives us

∂c

∂t
= −∇ · (−D∇c) = D∇ · (∇c) = D∇2c

∂c

∂t
= D∇2c (56)

Or for a special case in 1D
∂c

∂t
= D

∂2c

∂x2

In case that there is some source of molecules per unit volume s(x, y, z, t) = dN ′

dV dt , the continuity equation
does not apply. Instead, the balance of molecules in small volume dV per time dt is

dN = dΦdt = −∇ ·~jdV dt+ sdV dt

And the equation becomes
∂c

∂t
−D∇2c = s(x, y, z, t)

We now consider no source terms. The separation is

c = T (t)X(x)Y (y)Z(z)

Then

XY Z
dT

dt
= DT (t)

(
Y Z

d2X

dx2
+XZ

d2Y

dy2
+XY

d2Z

dz2

)
1

T

dT

dt
= D

(
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2

)
Left hand side must be equal to a constant. Lets label this constant K. For K = 0 we have the stationary
state. For positive K, we have

dT

dt
= KT

T = AeKt

which leads to diverging concentrations at very late times - this is clearly not a physical solution. Therefore,
we can relabel K = −K ′, as K has to be negative. We can even just drop the prime, as no other K ′ than
positive is possible, hence

dT

dt
= −KT

T = Ae−Kt

However, this is possible for any real negative number K. We can now continue the separation

K = D

(
1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2

)

K − D

X

d2X

dx2
= D

(
d2Y

dy2
+
d2Z

dz2

)
Again, this has to be equal to a constant and so on. For now, I will further explore one dimensional case.
There Y = Z = 1. So we have

d2X

dx2
=
K

D
X

But, only possible solution occured for K = −K (negative K). Therefore

d2X

dx2
= −K

D
X

X = Bei
√

K
D x + Ce−i

√
K
D x
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One last class of solutions we have to discuss is solutions for case when K = 0, which are the solutions for
the stationary state. In this case, the differential equation for X becomes

d2X

dx2
= 0

X = A0x+B0

wher A0 and B0 are some constants.
Since the diffusion equation is linear, the full solution is constructed by superposition of all possible solu-
tions.
The full solution is then

c(x, t) = A0x+B0 +
∑
K

Ae−Kt
(
Bei
√

K
D x + Ce−i

√
K
D x
)

Relabeling
√

K
D = λ

c(x, t) = A0x+B0 +
∑
λ

Ae−λ
2Dt

(
Beiλx + Ce−iλx

)
(57)

5.1.1 Boundary conditions

The tipical boundary conditions in 1D are setting either the concentration or the flux of the particles at
the ends of some finite tube to 0.
Lets start with the case when the flux j(t, x) on both ends of some tube of length L. We can place one
end into the beginning of our coordinate system. Then, we require j(t, 0) = j(t, L) = 0 (we drop the vector
nature of j, as we are in one dimension).
j is given by Fick’s law. Substituting from the general solution (57)

j = −DA0 −D
∂c

∂x
= −DA0 −D

∂

∂x

∑
λ

e−λ
2Dt

(
Aeiλx +Be−iλx

)
where I absorbed the constant A into constants B and C and relabeled the constants.
Now, applying the derivative (assuming that the sum converges)

j = −DA0 −D
∑
λ

e−λ
2Dt

(
Aiλeiλx −Biλe−iλx

)
Our boundary conditions are

j(t, 0) = −DA0 −D
∑
λ

e−λ
2Dt(Aiλ−Biλ) = 0

In order for this to be true at any time t, two conditions must both apply. First is A0 = 0 and second is
A = B. The condition on the second boundary is

j(t, L) = −D
∑
λ

e−λ
2Dt(AiλeiλL −Aiλe−iλL) = 0

j(t, L) = −D
∑
λ

e−λ
2DtAiλ

(
eiλL − e−iλL

)
= 0

Since A can generaly depend on λ, we cannot take it out of the sum. However, we can rewritte the
exponentials as a sine

j(t, L) = −D
∑
λ

e−λ
2DtAiλ2i sin(λL) = 2D

∑
λ

Aλe−λ
2Dt sin(λL)

In order for this to be equal to zero for all times, sin(λL) = 0 (which also covers the case λ = 0) Therefore

λL = nπ

where n is an integer. And therefore

λ =
nπ

L
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Therefore, the full solution becomes (as A0 = 0)

c(t, x) = B0 +

∞∑
n=−∞

e−(nπL )
2
DtA

(
ei
nπ
L x + e−i

nπ
L x
)

= B0 +

∞∑
n=−∞

2Ae−(nπL )
2
Dt cos

(nπ
L
x
)

Since cos is an even function, for some n and the opposite n′ = −n

e−(nπL )
2
Dt cos

(nπ
L
x
)

= e
−
(
n′π
L

)2
Dt

cos

(
n′π

L
x

)
Hence, these two terms in the sum can be substituted by

2A′ne
−
(
n′π
L

)2
Dt

cos

(
n′π

L
x

)
+ 2Ane

−(nπL )
2
Dt cos

(nπ
L
x
)

= (2A′n + 2An)e−(nπL )
2
Dt cos

(nπ
L
x
)

where we can further relabel 2A′n + 2An as a single constant An. For n = 0, we don’t have the second
opposite term in the sum, but both cosine and the decaying exponential are equal to one, and this term can
be simply added to the constant term B0 outside of the sum. Therefore, the solution can be represented
by a more familiar form.

c(t, x) = B0 +

∞∑
n=1

Ane
−(nπL )

2
Dt cos

(nπ
L
x
)

(58)

From the initial conditions, we can determine the values of constants An and B0. At time t = 0

c(0, x) = B0 +

∞∑
n=1

An cos
(nπ
L
x
)

But this is a Fourier serie of some initial distribution of concentration. Since this is cosine series, the
periodic extension of the function is even, and we can find An as

An =
2

L

∫ L

0

c(0, x) cos
(nπ
L
x
)
dx

And B0 as

B0 =
1

L

∫ L

0

c(0, x)dx

Now, I consider a more general case when the flux at the boundaries is constant but otherwise not de-
termined (can be both positive, meaning matter travelling in positive x direction, and negative, for left
travelling matter). Let the flux at x = 0 be j0 and at x = L the flux is jL. Fick’s law gives us

j = −DA0 −D
∑
λ

e−λ
2Dt(Aiλ−Biλ) = j0

In order for j0 to be constant, we have again A = B. But, we furthemore have

j0 = −DA0

The second boundary condition is

jL = −DA0 −D
∑
λ

e−λ
2DtAiλ

(
eiλL − e−iλL

)
= −DA0 +D

∑
λ

e−λ
2Dt2A sin(λL)

jL can be constant only when sin(λL) = 0, and hence we find that we require jL = j0 - there is some total
net flux accross the pipe. The analysis for initial conditions is very similar as above.

5.2 Wave Equation

In 1D, the wave equation is (as many times observed and derived in other modules)

c2
∂2u

∂x2
=
∂2u

∂t2

where c is some real constant.
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The separation of variables is as follows, and is again very similar to diffusion equation

u = X(x)T (t)

c2T
d2X

dx2
= X

d2T

dt2

1

X

d2X

dx2
=

1

c2T

d2T

dt2

Again, both sides are separately functions of different variables, and hence must be together equal to a
constant. Lets first assume that the constant is negative, and therefore denote it as −k2. Then

1

X

d2X

dx2
= −k2

d2X

dx2
= −k2X

X = A cos(kx) +B sin(kx)

1

c2T

d2T

dt2
= −k2

d2T

dt2
= −k2c2T

T = C cos(kct) +D sin(kct)

u = XT = (A cos(kx) +B sin(kx))(C cos(ckt) +D sin(ckt))

This is the most common wave solution. The full solution then occurs for superposition of all possible k.
The other family of solutions occurs for separation constant being positive, k2. Then

d2X

dx
= k2X

X = Aekx +Be−kx

d2T

dt2
= c2k2T

T = Ceckt +De−ckt

u = XT = (Aekx +Be−kx)(Ceckt +De−ckt)

If the solution is bounded in space or time, these solutions can still be physical solutions - they represent
the so called evanescent waves, which are for example present in description of wavefunction tunneling in
Schrödinger equation.
The final family of solutions is for separation constant 0. Then

d2X

dx2
= 0

X = A0x+B0

d2T

dt2
= 0

T = C0t+D0

u = (A0x+B0)(C0t+D0)

This solution only represents the 1D wave medium (string for example) moving in the space (T component)
or somehow tilted in the space (X component) and do not add any new physics. We usually only have to
consider first two types of solutions. Specially, for the first solution, we can again use Fourier analysis to
determine the displacement u depending on boundary and initial conditions.
There are many other solutions that can be derived using separation of variables (including the Schrödinger
equation), but they are included in other modules.
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6 Fourier Transforms

6.1 Complex Fourier Series

In analysis of partial differential equations, we many times used the Fourier series representation of functions
on a finite length interval L

f(x) = A0 +

∞∑
n=1

An cos
(nπ
L
x
)

+Bn sin
(nπ
L
x
)

(59)

Consider rewritting the cosines and sines in terms of complex exponentials. Then

f(x) = A0 +

∞∑
n=1

1

2
An
(
ei
nπ
L x + e−i

nπ
L x
)

+
1

2i
Bn
(
ei
nπ
L x − einπL x

)
Lets name nπ

L = kn. The representation becomes

f(x) = A0+

∞∑
n=1

An
2

(
eiknx + e−iknx

)
+
Bn
2i

(
eiknx − e−iknx

)
= A0+

∞∑
n=1

(
An
2

+
Bn
2i

)eiknx+

∞∑
n=1

(
An
2
−Bn

2i
)e−iknx

We can now notice that the second sum can be renumbered by n → −n. This causes kn → −kn, and the
representation becomes

f(x) = A0 +

∞∑
n=1

(
An
2

+
Bn
2i

)eiknx +

−1∑
n=−∞

(
A−n

2
− B−n

2i
)eiknx

Since An is generally different for different positive n and Bn as well, we can define new constant dependent
on n, Cn = An

2 + Bn
2i for positive n. For negative n, we can define this constant as Cn = A−n

2 − B−n
2i (as for

positive n, An and Bn are both defined). Then we have

f(x) = A0 +

∞∑
n=1

Cne
iknx +

−1∑
n=−∞

Cne
iknx

Finally, we note that we can rewrite A0 as

A0 = A0e
0 = A0e

ik0x

And therefore if we define C0 = A0, we have

f(x) =
−1∑

n=−∞
Cne

iknx + C0e
ik0x +

∞∑
n=1

Cne
iknx =

∞∑
−∞

Cne
iknx

This representation of f is called the complex Fourier series. The coefficients Cn can be generally complex,
although C0 is always real (derived from A0).
The coefficients are recovered from the function as follows∫ L

−L
f(x)e−ikmxdx =

∫ L

−L
e−ikmx

∞∑
−∞

Cne
iknxdx =

∞∑
−∞

Cn

∫ L

−L
ei(kn−km)xdx

Remembering the definition of kn ∫ L

−L
ei(kn−km)xdx =

∫ L

−L
ei
π
L (n−m)xdx

If n 6= m ∫ L

−L
ei
π
L (n−m)xdx =

1

i πL (n−m)

(
ei
π
L (n−m)L − e−i πL (n−m)L

)
=

2L

π(n−m)
sin (π(n−m))

And since n−m is an integer, this is always zero. In the case when n = m∫ L

−L
ei0xdx = 2L
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Hence, for general n and m ∫ L

−L
ei
π
L (n−m)xdx =

∫ L

−L
ei(kn−km)xdx = 2Lδnm

Where δ is the Kronecker delta. Hence∫ L

−L
f(x)e−ikmxdx =

∞∑
−∞

2LCnδnm = 2LCm

Cn =
1

2L

∫ L

−L
f(x)e−iknxdx

The reverse transforms to An and Bn can be obtained from manipulating Cn and C−n for some positive n.

An = Cn + C−n

Bn = i(Cn − C−n)

Exception is A0, which is defined directly
A0 = C0

These also give us the conditions on complex Cn in order to be valid Fourier coefficients that give real An
and Bn. From relation for An, Im(Cn) = −Im(C−n). From the second reverse transform

Bn = i(Re(Cn) + iIm(Cn)− Re(C−n)− iIm(C−n)) = i(Re(Cn)− Re(C−n)) + Im(C−n)− Im(Cn)

In order for this to be real, Re(Cn) = Re(C−n). Hence, the overall condition can be summarized as

Cn = C̄−n

, the coefficients with opposite indices have to be complex conjugates.

6.2 Fourier Transforms

Now, consider that we increase the length of the interval L to infinity. The coefficient Cn will clearly go to
zero, but that might not be true for expression 2LCn. This expression goes to

lim
L→∞

2LCn =

∫ ∞
−∞

f(x)e−iknxdx

Another thing to notice is that the spacing between kn and kn+1 decreases

kn+1 − kn = ∆kn =
π

L
(n+ 1− n) =

π

L

lim
L→∞

(kn+1 − kn) = 0

Hence, we can view the kn as continuous variable and drop the indexing. We than have

lim
L→∞

2LCn =

∫ ∞
−∞

f(x)e−ikxdx

The complex Fourier representation of f(x) can be rewritten as

f(x) = lim
L→∞

∞∑
−∞

Cne
iknx = lim

L→∞

∞∑
−∞

(2LCn)
π

2Lπ
eiknx = lim

L→∞

1

2π

∞∑
−∞

(2LCn)∆kne
iknx

Again, dropping indexing for kn, the sum converges to following integral

f(x) =
1

2π

∫ ∞
−∞

(2LCn)eikxdk

We call the expression (2LCn) = f̃(k) the Fourier transform of f . It depends on k because Cn depends on
n, but there is a one-to-one correspondence between n and k. Then we can rewrite the derived relations as

f̃(k) = F{f(x)} =

∫ ∞
−∞

f(x)e−ikxdx (60)

f(x) = F−1{f̃(k)} =
1

2π

∫ ∞
−∞

f̃(k)eikxdk (61)
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6.3 Dirac Delta

When taking consequently the forward and reverse Fourier transform of a function f , we should arrive at
the same function. Doing this explicitly

F−1{F{f}} = f

f(x) =
1

2π

∫ ∞
−∞

eikx
∫ ∞
−∞

e−ikx
′
f(x′)dx′dk

(note the use of dummy variable for inner integration). Reversing the order of integration

f(x) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(x−x′)f(x′)dkdx′ =

∫ ∞
−∞

f(x′)

(
1

2π

∫ ∞
−∞

e−ik(x′−x)dk

)
dx′

The object in the brackets only depends on (x′ − x) term and is called the integral representation of Dirac
delta function, denoted as δ(x′ − x).
The Dirac delta function therefore has property (by the above definition from Fourier transform)∫ ∞

−∞
f(x)δ(x− s)dx = f(s) (62)

where I switched x′ to x and x to s. From this property, we can imediately determine the second property
of Dirac delta function. If f(x) is a constant function f(x) = 1∫ ∞

−∞
f(x)δ(x′ − x)dx =

∫ ∞
−∞

δ(x′ − x)dx = 1

Hence the Dirac delta is normalised to one. Other properties of Dirac delta are defined from the approx-
imation of the integral representation. Assume that we do not integrate over the whole range from infty
to ∞, but just from some big −L to some L. Dirac delta function is represented in this way in Fig. 14

Figure 14: Dirac delta approximated as δL =
∫ L
−L e

−ik(x′−x)dk. The central peak gradualy increases in
height for increasing L. For this example, x = 0 - the Dirac delta is centered on zero. Other parts of the
function become insignificant when compared to the central peak.

There are two important properties to derive from this approximation. First is that Dirac delta is zero
everywhere except at zero, i. e.

∀x 6= s : δ(x− s) = 0

Second property is that Dirac delta function is symmetric around the zero in a sense that∫ s

−∞
δ(x− s)dx =

∫ ∞
s

δ(x− s)dx
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Together with the normalisation of Dirac delta, this leads to∫ s

−∞
δ(x− s)dx =

∫ ∞
s

δ(x− s)dx =
1

2

Obvious consequence of the first property is also that integral of Dirac delta over any interval I which does
not include the point where the argument of Dirac delta is zero goes to zero∫

I,s/∈I
δ(x− s)dx = 0

Besides being a part of the Fourier transforms theory, Dirac delta function is also a very useful function to
model any point-like sources/particles etc. For example, a point charge can be modeled as charge density
ρ which takes form

ρ = Qδ3(~r − ~r′)

where Q is the charge and δ3(~r−~r′) is the 3D equivalent of Dirac delta and ~r′ is the position of the charge.
In cartesian coordinates, the 3D Dirac delta is simply

δ3(~r − ~r′) = δ(x− x′)δ(y − y′)δ(z − z′)

In other coordinate system, the normalisation condition must apply, which means that we must always
have ∫∫∫

V,~r∈V
δ3(~r − ~r′)dV = 1

Therefore, in cylindrical coordinates, we have

δ3(~r − ~r′) =
1

r
δ(r − r′)δ(φ− φ′)δ(z − z′)

And in spherical polar coordinates

δ3(~r − ~r′) =
1

r2 sin(θ)
δ(r − r′)δ(θ − θ′)δ(φ− φ′)

Similarly, Dirac delta for other number of dimensions or for tilted planes/lines in different coordinate
systems can be found, but this is not further explored here.

6.4 Some explicit Fourier transforms

Now I present some Fourier transforms of explicit functions f(x), and also reverse Fourier transforms of
the analogous functions f̃(k)

6.4.1 Dirac Delta

Let f(x) = δ(x− x′). Then

F{δ(x− x′)} =

∫ ∞
−∞

δ(x− x′)e−ikxδ(x− x′)dx = e−ikx
′

Let f̃(k) = δ(k − k′). Then

F−1{δ(k − k′)} =
1

2π

∫ ∞
−∞

eikxδ(k − k′)dk =
eik
′x

2π

For special case when x′ = 0 (or k′ = 0), F{δ(x)} = 1 (or F−1{δ(k)} = 1
2π ). Therefore, perfect, point-like

localization for a function means its Fourier transform (or reverse Fourier transform) is perfectly delocalized
(constant function). This is further explored in quantum mechanics.
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6.4.2 Cosine and sine

Cosine and sine transform as follows

F{cos(ax)} =

∫ ∞
−∞

e−ikx cos(ax)dx =

∫ ∞
−∞

e−ikx
eiax + e−iax

2
dx =

=
1

2

(∫ ∞
−∞

e−i(k−a)xdx+

∫ ∞
−∞

e−i(k+a)xdx

)
= π(δ(k − a) + δ(k + a))

F{sin(ax)} =

∫ ∞
−∞

e−ikx sin(ax)dx =
1

2i

(∫ ∞
−∞

e−i(k−a)xdx−
∫ ∞
−∞

e−i(k+a)xdx

)
=

=
π

i
(δ(k − a)− δ(k + a)) = πi (δ(k + a)− δ(k − a))

6.4.3 Exponential

Pure exponential is not transformable, because at some infinity, this function diverges and the integral
diverges as well. However, function of type e−|ax| does not diverge. The transform is (assuming positive a)

F{e−|ax|} =

∫ ∞
−∞

e−ikxe−|ax|dx =

∫ 0

−∞
e−ikxe−a(−x)dx+

∫ ∞
0

e−ikxe−a(x)dx =

=

∫ 0

−∞
e−x(ik−a)dx+

∫ ∞
0

e−x(ik+a)dx =

[
e−x(ik−a)

−(ik − a)

]0

−∞
+

[
e−x(ik+a)

−(ik + a)

]∞
0

At the infinity, the real part always dominates the imaginary part, as the imaginary part is oscillatory and
finite while the real part is infinitesimal. Therefore[

e−x(ik−a)

−(ik − a)

]0

−∞
=

1

a− ik[
e−x(ik+a)

−(ik + a)

]∞
0

=
1

a+ ik

Therefore

F{e−|ax|} =
1

a− ik
+

1

a+ ik
=
a+ ik + a− ik

a2 + k2
=

2a

a2 + k2

6.4.4 Gaussian

Gaussian is a function of type f(x) = e−
x2

a2 . It tranforms as

F{e−
x2

a2 } =

∫ ∞
−∞

e−ikxe−
x2

a2 dx =

∫ ∞
−∞

e
−
(
x2

a2
+ikx

)
dx =

∫ ∞
−∞

e
−
(
x2

a2
+ikx+( iak2 )

2−( iak2 )
2
)
dx =

=

∫ ∞
−∞

e−( xa+ iak
2 )

2
+( iak2 )

2

dx = e−
a2k2

4

∫ ∞
−∞

e−( xa+ iak
2 )

2

dx

By substitution z = x
a + iak

2

F{e−
x2

a2 } = ae−
k2a2

4

∫ ∞+ iak
2

−∞+ iak
2

e−z
2

dz

Because the offset is constant for the limits, the integration contour is just a line parallel to the real axis,
adn therefore the we can transform the integral into real integral. Then

F{e−
x2

a2 } = ae−
k2a2

4

∫ ∞
−∞

e−z
2

dz = a
√
πe−

k2a2

4

Therefore, the transform of a Gaussian is another Gaussian, multiplied by some constant and with inverse
width 1

a . This is the mathematical principle behind the Heisenberg Uncertainty Principle.
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6.5 General Function Properties

Several (and perhaps more important) properties of a Fourier transform of a function can be derived
independently of the specific function form. I now give few examples of those

6.5.1 Linearity

Assume we have a function h(x) = af(x) + bg(x), where f(x) and g(x) are some Fourier-transformable
functions and a and b are some constants. Then, the Fourier transform of h is

h̃(k) =

∫ ∞
−∞

(af(x) + bg(x))e−ikxdx = a

∫ ∞
−∞

f(x)e−ikxdx+ b

∫ ∞
−∞

g(x)e−ikxdx = af̃(k) + bg̃(k) (63)

Therefore, the Fourier transform is a linear operation. This is property is inhereted from the linearity if
the integration.

6.5.2 Translation

Assume we have a function h(x) = f(x − x′) (function translated to the right with respect to original
function f). The Fourier transform is (using substitution z = x− x′

h̃(k) =

∫ ∞
−∞

e−ikxf(x− x′)dx =

∫ ∞
−∞

e−ik(z+x′)f(z)dz = e−ikx
′
∫ ∞
−∞

e−ikzf(z)dz = e−ikx
′
f̃(k) (64)

Therefore translation is transformed as multiplication by factor e−ikx
′
, which is equivalent to rotation of a

phasor by some phase angle.

6.5.3 Scaling

Assume we have a function h(x) = f(ax). The Fourier transform is (z = ax)

h̃(k) =

∫ ∞
−∞

e−ikxf(ax)dx =
1

a

∫ ∞
−∞

e−ik
z
a f(z)dz =

1

a
f̃

(
k

a

)
(65)

The principle here is similar to the transform of a Gaussian - wider function in real space (f(x)) is narrower
in phase space (f̃(k)).

6.5.4 Derivatives

Let h(x) = dnf
dxn . The Fourier transform is

h̃(k)

∫ ∞
−∞

e−ikx
dnf

dxn
dx =

[
e−ikx

dn−1f

dxn−1

]∞
−∞
−
∫ ∞
−∞

(−ik)e−ikx
dn−1f

dxn−1

If we require dn−1f
dxn−1 |x→±∞ = 0, the above becomes

h̃(k) = (ik)1

∫ ∞
−∞

e−ikx
dn−1f

dxn−1
dx

We can continue this chain of integration by parts and requiring all derivatives of f to go to zero at infinities
and we then arrive at

h̃(k) = (ik)n
∫ ∞
−∞

e−ikx
dn−nf

dxn−n
= (ik)n

∫ ∞
−∞

e−ikxf(x)dx = (ik)nf̃(k) (66)

6.5.5 Solving Differential Equations

We can use the properties of Fourier trasforms to solve some differential equations. For example, the Fourier
transform of the diffusion equation (with respect to x) becomes

F

{
∂u

∂t

}
= F

{
D
∂2u

∂x2

}
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Let ũ = F{u}. Then, because we can take the derivative with respect to t outside of the integral, the
equation becomes

∂ũ

∂t
= D(ik)2ũ(k, t)

∂ũ

∂t
= −Dk2ũ(k, t)

ũ(k, t) = Ae−Dk
2t = Ae−

k2(
√

4Dt)2

4 =
A√

4Dtπ

√
4Dtπe−

k2(
√

4Dt)2

4

Compairing this to the Fourier transform of a Gaussian, we can see that

u(x, t) =
A√

4Dtπ
e−

x2

4Dt

This is a specific solution to the diffusion equation, which corresponds to point source in time and space.
This is the Green’s function of the diffusion equation. This means that a solution at some later time t′ can
be gained from the solution in time t = 0 according to

u(x, t′) =

∫
allx

A√
4Dtπ

e−
x2

4Dtu(x, 0)dx

6.5.6 Parseval’s theorem

Consider calculating integral
∫∞
−∞ |f(x)|2dx. This integral can be rewritten as∫ ∞

−∞
f(x)f̄(x)dx

We now express f using the reverse Fourier transform of f̃ :∫ ∞
−∞

dx

(
1

2π

∫ ∞
−∞

dkeikxf̃(k)

)(
1

2π

∫ ∞
−∞

dk′eik′xf̃(k′)

)

Taking the complex conjugate inside the integral and staking all functions into the inner most integral, we
transform the expression to∫ ∞

−∞
dx

(∫ ∞
−∞

dk

(∫ ∞
−∞

dk′
1

4π2
ei(k−k

′)xf̃(k)
¯̃
f(k′)

))
Reversing the order of integration so that we do integration with respect to x first, the expression becomes∫ ∞

−∞
dk

(∫ ∞
−∞

dk′
(∫ ∞
−∞

dx
1

4π2
ei(k−k

′)xf̃(k)
¯̃
f(k′)

))
=

=
1

2π

∫ ∞
−∞

dk

(∫ ∞
−∞

dk′f̃(k)
¯̃
f(k′)

(
1

2π

∫ ∞
−∞

e−i(k
′−k)xdx

))
We can recognize the innermost expression as Dirac delta integral representation, and therefore we can
continue with transforming the expression to

1

2π

∫ ∞
−∞

dk

(∫ ∞
−∞

dk′f̃(k)
¯̃
f(k′)δ(k′ − k)

)
=

1

2π

∫ ∞
−∞

dkf̃(k)
¯̃
f(k) =

1

2π

∫ ∞
−∞
|f̃(k)|2dk

Therefore, we have ∫ ∞
−∞
|f(x)|2dx =

1

2π

∫ ∞
−∞
|f̃(k)|2dk (67)

which is called the Parseval’s theorem.
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6.5.7 Convolutions

The convolution of two functions f(x) and g(x) is a function h(x) defined as

h(x) = f ∗ g(x) =

∫ ∞
−∞

f(y)g(x− y)dy

This seems like a rather arbitrary definition, but this concept has several uses. For example, the translated
function can be expressed as convolution with Dirac delta function

f(x− x′) =

∫ ∞
−∞

f(y)δ((x− x′)− y)dy

Again, convolutions are linear in both arguments, i. e.

(af+bg)∗h(x) =

∫ ∞
−∞

(af(y)+bg(y))h(x−y)dy = a

∫ ∞
−∞

f(y)h(x−y)dy+b

∫ ∞
−∞

g(y)h(x−y)dy = a(f∗h)(x)+b(g∗h)(x)

and similarly
f ∗ (ag + bh)(x) = a(f ∗ g)(x) + b(f ∗ h)(x)

where a and b are constants and h is a function. This means that we can represent some repeating pattern
by sum of convolutions of Dirac delta functions with the unit cell of the pattern. This will be covered
explicitly in diffraction.
Now, we are more interested in the Fourier transform of the convolution.

F{f ∗ g} =

∫ ∞
−∞

dxe−ikx
∫ ∞
−∞

dyf(y)g(x− y)

Using inverse Fourier transform to represent g(x− y)

F{f ∗ g} =

∫ ∞
−∞

dxe−ikx
∫ ∞
−∞

dyf(y)
1

2π

∫ ∞
−∞

dk′eik
′(x−y)g̃(k′) =

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dk′
1

2π
f(y)g̃(k′)e−ik

′ye−i(k−k
′)x

Reversing the order of integration so that we integrate with respect to x first

F{f ∗ g} =

∫ ∞
−∞

dy

∫ ∞
−∞

dk′
∫ ∞
−∞

dx
1

2π
f(yg̃(k′))e−ik

′ye−i(k−k
′)x =

=

∫ ∞
−∞

dyf(y)

∫ ∞
−∞

dk′g̃(k′)e−ik
′y

(
1

2π

∫ ∞
−∞

e−i(k−k
′)xdx

)
=

∫ ∞
−∞

dyf(y)

∫ ∞
−∞

dk′g̃(k′)e−ik
′yδ(k − k′) =

=

∫ ∞
−∞

dyf(y)g̃(k)e−iky = g̃(k)

∫ ∞
−∞

dyf(y)e−iky = f̃(k)g̃(k)

Therefore, the Fourier transform of a convolution is simply the product of the Fourier trasforms of the
functions in convolution. This is called the convolution theorem.

F{f ∗ g} = F{f}F{g} (68)

6.5.8 Moments of distributions

A general n-th moment of a distribution f(x), Mn(f) is given by integral

Mn(f) =

∫ ∞
−∞

xnf(x)dx

Consider the Fourier transform of xnf(x)

F{xnf(x)} =

∫ ∞
−∞

e−ikxxnf(x)dx
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Clearly, Mn(f) = F{xnf(x)}(k = 0). Now consider the inverse Fourier transform of derivative of transform
of f

F−1

{
dnf̃

dkn

}
=

1

2π

∫ ∞
−∞

eikx
dnf̃

dkn
dk

We can deconstruct this integral analogously as the one for the derivative of forward Fourier transform,
assuming that all derivatives of f̃(k) go to zero at infinities∫ ∞

−∞
eikx

dnf̃

dkn
=

[
eikx

dn−1f̃

dkn−1

]∞
−∞

−
∫ ∞
−∞

(ix)eikx
dn−1f̃

dkn−1
dk =

=
(x
i

)1
∫ ∞
−∞

eikx
dn−1f̃

dkn−1
dk =

(x
i

)n ∫ ∞
−∞

eikxf̃(k)dk

Therefore

F−1

{
dnf̃

dkn

}
=
(x
i

)n 1

2π

∫ ∞
−∞

eikxf̃(k)dk =
(x
i

)n
f(x)

F−1

{
in
dnf̃

dkn

}
= xnf(x)

Taking Fourier transform of both sides, we find out that

F{xnf(x)} = in
dnf̃

dkn
(69)

But, this can be used to calculate moments of distributions as

Mn(f) = F{xnf(x)}(k = 0) = in
dnf̃

dkn
|k=0

Summarizing

Mn(f) = in
dnf̃

dkn
|k=0 (70)

6.6 Generalization to 3D

Fourier transforms in 3D in cartesian coordinates are simply taken with respect to all the coordinates
sequentially. Hence

f̃(kx, ky, kz) = f̃(~k) =

∫ ∞
−∞

dxe−ikxx
∫ ∞
−∞

dye−ikyy
∫ ∞
−∞

dze−ikzzf(x, y, z) =

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dze−i(kxx+kyy+kzz)f(~r) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dze−i
~k·~rf(~r)

Therefore, the general formula (valid in other coordinate systems as well) is

F{f(~r)} =

∫∫∫
all space

e−i
~k·~rf(~r)dV (71)

Similarly, the inverse Fourier transform is

F−1{f̃(~k)} =
1

(2π)3

∫∫∫
all k−space

f̃(~k)dVk (72)

where dVk is the element of the k vector space volume. Denoting real space as V and k space as Vk, we
can use these definitions to find the integral representation of Dirac delta in multiple dimensions

f(~r) =
1

(2π)3

∫∫∫
Vk

dVke
i~k·~r
∫∫∫

V

e−i
~k·~r′f(~r′)dV ′ =

1

(2π)3

∫∫∫
Vk

dVk

∫∫∫
V

dV ′e−i
~k·(~r′−~r)f(~r′)

Reversing the order of integration

f(~r) =
1

(2π)3

∫∫∫
V

dV ′
∫∫∫

Vk

dVke
−~k·(~r′−~r)f(~r′) =

∫∫∫
V

dV ′f(~r′)

(
1

(2π)3

∫∫∫
Vk

e−i
~k·(~r′−~r)dVk

)
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The last expression clearly plays the role of 3D Dirac delta. Therefore

δ3(~r − ~s) =
1

(2π)3

∫∫∫
Vk

e−i
~k·(~r−~s)dVk

Most of other results, importantly including the convolution theorem, have their 3D analogue. The convo-
lution theorem is simply F{f ∗ g}(~k) = f̃(~k)g̃(~k)

7 Diffraction

7.1 Wave Equation

7.1.1 Decomposition of 1D wave

The wave equation in 1D has form
∂2u

∂t2
= c2

∂2u

∂x2

Taking Fourier transform with respect to space first

∂2

∂t2
Fx{u} = −c2k2Fx{u}

and then with respect to time

−ω2Ft{Fx{u}} = −c2k2Ft{Fx{u}}

For non-zero total Fourier transform (with repect to both t and x) of u, we can rewrite this as familiar
dispersion relation

ω2 = k2c2

Or equivalently
ω2 − k2c2 = 0

Consider now taking the inverse Fourier transform of some function f̃(ω, k). In order to make sure it is a
Fourier transform of a function satisfying the wave equation, we can take all possible functions of ω and k
and only choose those for which dispersion relation applies using Dirac delta. This means that

ũ(ω, k) = f̃(ω, k)δ(ω2 − k2c2)

where f̃ is any function of ω and k. Now we can take the inverse Fourier transform in frequency

F−1
t {ũ(ω, k)} =

1

2π

∫ ∞
−∞

eiωtf̃(ω, k)δ(ω2 − k2c2)

However, delta function here becomes zero at two points, at ±kc. We are only able to handle delta function
if it becomes zero once in the interval. Lets therefore split the integral so that it consists of two intervals,
each with one root of argument of the delta function.

F−1
t {ũ} =

1

2π

(∫ 0

−∞
dωeiωtf̃(ω, k)δ(ω2 − c2k2) +

∫ ∞
0

dωeiωtf̃(ω, k)δ(ω2 − c2k2)

)
We now use substitution z = ω2 − c2k2. This has general solution

ω = ±
√
z + c2k2

dω = ± dz

2
√
z + c2k2

The negative pair corresponds to the first integral (only this pair can produce ω → −∞). The positive pair
corresponds to the second integral. Therefore the first integral becomes∫ −ck

∞

−dz
2
√
z + c2k2

e−i
√
z+c2k2tf̃(−

√
z + c2k2, k)δ(z) =

=

∫ ∞
−ck

1

2
√
z + c2k2

e−i
√
z+c2k2tf̃(−

√
z + c2k2, k)δ(z)dz =

1

2ck
e−icktf̃(−ck, k)
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The second integral becomes∫ ∞
−ck

1

2
√
z + c2k2

ei
√
z+c2k2tf̃(

√
z + c2k2, k)δ(z)dz =

1

2ck
eicktf̃(ck, k)

So

F−1
t {ũ} =

1

4πck

(
e−icktf̃(−ck, k) + eicktf̃(ck, k)

)
Taking the inverse Fourier transform with respect to wavenumber (space), we obtain the original amplitude
function

F−1
x {F−1{ũ}} = u(x, t) =

1

2π

∫ ∞
−∞

dkeikx
1

4πck

(
e−icktf̃(−ck, k) + eicktf̃(ck, k)

)
=

=
1

2π

∫ ∞
−∞

f̃(−ck, k)

4πck
eik(x−ct)dk +

1

2π

∫ ∞
−∞

f̃(ck, k)

4πck
eik(x+ct)dk

These two integrals are just inverse Fourier transforms of some wavenumber functions. If we name these
functions

g̃(k) =
f̃(−ck, k)

4πck

h̃(k) =
f̃(ck, k)

4πck

we then have

u(x, t) =
1

2π

∫ ∞
−∞

g̃(k)eik(x−ct)dk +
1

2π

∫ ∞
−∞

h̃(k)eik(x+ct)dk = g(x− ct) + h(x+ ct) (73)

Therefore, any wave in one dimension can be expressed as superposition of two waves travelling in opposite
directions.

7.1.2 Radially Symmetric 3D waves

In 3D, the wave equation is more complicated and takes form

c2∇2u =
∂2u

∂t2

However, for spherically symmetric waves in spherical polar coordinate system, only derivatives with respect
to radial direction will be non-zero. Therefore the equation becomes

c2
1

r2

∂

∂r

(
r2 ∂u

∂r

)
=
∂2u

∂t2

In order to make further progress, we assume that the intensity of the wave, which is a square of the
amplitude of the wave, drops as the inverse square of distance from the source, which lies at origin (centre
of symmetry). This means that we assume I ∝ u2 ∝ 1

r2 . This can be expressed for some function v(r, t) as

u =
v(r, t)

r

Then, the equation becomes
c2

r2

∂

∂r

(
r2 ∂

∂r

(v
r

))
=

1

r

∂2v

∂t2

c2

r2

∂

∂r

(
r2

(
∂v
∂r r − v
r2

))
=

1

r

∂2v

∂t2

c2

r

∂

∂r

(
∂v

∂r
r − v

)
=
∂2v

∂t2

c2

r

(
∂2v

∂r2
r +

∂v

∂r
− ∂v

∂r

)
=
∂2v

∂t2
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Which finally leads to

c2
∂2v

∂r2
=
∂2v

∂t2

This means that the v function behaves exactly like a wave in 1D. We can therefore express the spherically
symmetric wave as superposition of left and right travelling waves in r, divided by r (the wave is the u
field)

u(r, t) =
g(r − ct) + h(r + ct)

r
(74)

7.1.3 Monochromatic Light

Now, we consider the effects that a monochromaticity of light has on our derived results. First, for
monochromatic light, just one wavelength, adn therefore just one wavenumber describes the wave. This
means that functions g̃(k) and h̃(k) in (73) become effectively Dirac delta functions Aδ(k − k0) and
Bδ(k − k0), where k0 is the wavenumber of the wave. (73) then becomes

u(x, t) =
1

2π

∫ ∞
−∞

Aδ(k − k0)eik(x−ct)dk +
1

2π

∫ ∞
−∞

Bδ(k − k0)eik(x+ct)dk

Absorbing the 1
2π into the constants, we then have

u(x, t) = Aeik0(x−ct) +Beik0(x+ct) (75)

Hence a monochromatic wave in 1D is always a combination of two plane waves travelling in the opposite
direction.
Similarly, for the monochromatic radially symmetrical wave in 3D

u(r, t) =
Aeik0(r−ct) +Beik0(r+ct)

r
(76)

7.2 Huygens’ principle

It might seem that spherically symmetrical source is a very specific situation, but in fact the solution of
this situation can be extended using the Huygens’ principle.
This principle states that every point on a wavefront of a wave behaves like a independent point source.
Because it is a point source and it is independent, it is spherically symmetrical. Therefore, progression of
any wavefront can be expressed as combination of progression of spherically symmetrical point sources.
There are two last subtleties to take into account. Firtly, at the wavefront, sometimes know the direction
of progression of the wavefront in some small distance around it. We then usually choose the constituent
plane waves created by the point source so that this direction is obeyed. This means that if we know that
the wave is right travelling at some point source, we only choose the eik0(r−ct) part, effectively setting B in
(76) to zero.
Second subtlety is discusset in following section

7.2.1 Coherent Light

A complication with the Huygens’ principle approach is that different points at the wavefront have different
relative phases. This can be expressed by some phase difference function η(~r, t), so that we can describe any
point on the wavefront correctly with respect to others as creating a wave proportional to ei(k0(r−ct)+η(~r,t)).
This phase difference greatly complicates any calculations, and when its variation is big enough (order of
π across the considered points), the stable diffraction phenomena becomes not visible (it might be visible
for some slow waves, but for light the pattern simply disappears).
Coherent light is light for which all the points on some wavefront have the same phase, which then enables
us to set η(~r, t) = 0.

7.3 Fraunhofer Diffraction

Fraunhofer diffraction is a diffraction in a specific setup, illustrated in Fig. 15. The light incident on the
screen from the left is coherent and only right travelling. Therefore, any point source on the screen creates
a wave

up(~r, t) =
Ape

ik0(rp−ct)

rp
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Figure 15: Setup for Fraunhofer diffraction. Light is incident on the plane y2y1 from the left and travels
in the direction of x. The interference pattern is created on distant screen x2x1. The distance of the two
screens is D. The origin of both coordinate systems is O1 point.

where rp is the distance of some point ~r from the given point source.
The amplitude Ap varies from point to point on the wavefront. It is perhaps better to describe it as a
function that gives the intensity at some point surface in screen plane - y2y1 on which the light is incident.
We call this function the aperture function a(~y), where ~y = (y1, y2, 0) is the cartesian coordinate vector on
the screen plane. Then

Ap(~y) = a(~y)dy1dy2 = a(~y)d2y

where d2y is just a shorthand for dy1dy2.
We can make one more change to make the calculations easier - in order to be able to easily add the effects
of several point sources, we need them to be unit point sources. This is achieved by adding a constant to
the aperture function, which in this case is 1

4π . Then, we have that from one point source on the screen,
the wave is

up(~r, t) =
a(~y)eik0(|~r−~y|−ct)

4π|~r − ~y|
d2y

where ~r = (x1, x2, x) is the position vector on the image screen.
Then, the total interference pattern is constructed by adding together the influences of all independent
point sources in the screen plane. The wave amplitude in the image plane is then

ui(~r, t) =

∫∫
y

a(~y)eik0(|~r−~y|−ct) 1

4π|~r − ~y|
d2y

where we integrate over the whole screen plane.
In the zeroth approximation, which is valid for the denominator of the integrand, for big distance D when
compared to |~y| for ~y where a(~y) 6= 0

|~r − ~y| ≈ D

However, we cannot do the same approximation for the expression in the exponent. Here, we have to be
more careful, as the exponent can vary the value of ui greatly. The first approximation is

|~r − ~y| =
√

(~r − ~y)2 =
√

(x1 − y1)2 + (x2 − y2)2 + x2

This can be approximated. Present a new position vector that has origin in the image plane and has x2

and x1 axis parallel to those of y2y1 coordinate system. Then, the position on the image plane can be given
by ~x = (x1, x2, 0). Then

|~r − ~y| =
√

(~x− ~y)2 + x2
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Since the screen is at distance x = D, which is big compared to distances |~x| and |~y|, which we consider

|~r − ~y| = D

√
1 +

(~x− ~y)2

D2
≈ D

(
1 +

(|~x|2 + |~y|2 + 2~x · ~y)

2D2

)
≈ D

(
1 +

~x · ~y
D2

)
≈ D +

~x · ~y
D

So, the interference pattern on the image screen is approximated by

ui(~x, t) ≈
1

4πD

∫∫
y

d2ya(~y)e−ik0(D+ ~x·~y
D −ct) =

e−ik0(D−ct)

4πD

∫∫
y

d2ya(~y)e−i
k0~x
D ·~y

Here, I put together k0~x
D because it represents a wavevector between two points on the image screen created

due to one point source. Therefore, we can write that on the image screen due to one point source

~k =
k0~x

D

Hence, we have formula for the interference pattern

ui(~x, t) =
e−ik0(D−ct)

4πD

∫∫
y

a(~y)e−i
~k·~yd2y =

e−ik0(D−ct)

4πD
ã(~k) (77)

The amplitude on the image screen is therefore proportional to the Fourier transform of the aperture
function.
Now I include a few examples of diffraction patterns.

7.3.1 Single Point Source

The aperture function for a single point source has a form of a(~y) = Aδ2(~y− ~y′) where ~y′ is the position of
the point source on the screen. The image on the image screen becomes

ui(~x, t) =
e−ik0(D−ct)

4πD

∫∫
y

Aδ2(~y − ~y′)e−i~k·~yd2y =
e−ik0(D−ct)

4πD
Ae−i

~k·~y′

And the observed intensity becomes

I = uiūi =
A2

16π2D2

which is constant with position on the image plane, ~x.

7.3.2 Two Point Sources

Let there be two point sources on the screen so that aperture function is a(~y) = Aδ(~y − ~y1) + Aδ(~y − ~y2).
Then, the Fourier transform of this function is∫∫

y

e−i
~k·~yA(δ2(~y − ~y1) + δ2(~y − ~y2))d2y = A

∫∫
y

e−i
~k·~yδ2(~y − ~y1)d2y +A

∫∫
y

e−i
~k·~yδ2(~y − ~y2)d2y =

= Ae−i
~k·~y1 +Ae−i

~k·~y2

Therefore, the intensity on the image screen is

I = uiūi =
1

16π2D2
A2
(
e−i

~k·~y1 + e−i
~k·~y2
)(

ei
~k·~y1 + ei

~k·~y2
)

=

=
A2

16π2D2

(
2 + ei

~k·(~y2−~y1) + e−i
~k·(~y2−~y1)

)
=

A2

16π2D2

(
2 + 2 cos

(
~k · (~y2 − ~y1)

))
=

=
A2

16π2D2
4 cos2

(
~k · (~y2 − ~y1)

2

)
=

A2

16π2D2
4 cos2

(
k0~x · (~y2 − ~y1)

2D

)
where I used the definition mentioned earlier ~k = k0~x

D . We can further express the k0 using the wavelength
to get more familiar form

I =
A2

16π2D2
4 cos2

(
π~x · (~y2 − ~y1)

λD

)
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Therefore, if we move along the direction of ~y2− ~y1 along the image screen (changing vector x), we change
the phase most rapidly. If we move in a direction normal to ~y2 − ~y1, we do not change the phase at all.
This means that the pattern looks like familiar fringes that are periodically dim and birght and are all
perpendicular to direction ~y2 − ~y1.
The distance between the maxima is the distance between maxima of cos2, which is distance from maxima
of cos to minimum of cos. This means that for ~x along ~y2−~y1 which gives a maximum, the next maximum
occurs at ~x+ ∆~x for which

π =
π(~x+ ∆~x) · (~y2 − ~y1)

λD
− π~x · (~y2 − ~y1)

λD

1 =
∆xl

λD

where l is the distance between the point sources (∆~x is along ~y2 − ~y1)

∆x =
Dλ

l

Therefore, the smaller the distance between the sources, the bigger the distance between the maxima of
the fringes. Higher order maxima are at multiples of this distance.

7.3.3 Rectangular Slit

Now, consider a case of rectangular shape apreture centered around the origin. If the aperture has width
w (along y1 direction) and height h (along the y2 direction), the aperture function is

a(~y) = 0,∀~y : |y1| >
w

2
∨ |y2| >

h

2

a(~y) = A,∀~y : |y1| ≤
w

2
∧ |y2| ≤

h

2

The Fourier transform is∫∫
y

a(~y)e−i
~k·~yd2y =

∫ w
2

−w2

∫ h
2

−h2
Ae−i

~k·~yd2y = A

(∫ w
2

−w2
e−ik1y1dy1

)(∫ h
2

−h2
e−ik2y2dy2

)
=

= A
1

−ik1

(
e−ik1

w
2 − eik1 w2

) 1

−ik2

(
e−ik2

h
2 − eik2 h2

)
=

A

k1k2
2 sin

(
k1
w

2

)
2 sin

(
k2
h

2

)
=

=
Awh
k1k2wh

4

sin
(
k1
w

2

)
sin

(
k2
h

2

)
= Awh sinc

(
k1
w

2

)
sinc

(
k2
h

2

)
The intensity is (substituting for ~k)

I =
1

16π2D2
A2w2h2 sinc2

(πx1w

λD

)
sinc2

(
πx2h

λD

)
The most important feature in the sinc function is the central peak. It reaches from the value of argument
−π to π. Then, the central peak has approximate size ∆x1

2π =
2π∆x1w

λD2

∆x1 =
2λD

w

And the size in the other direction is

∆x2 =
2λD

h

Therefore, the central slit is wider in horizontal direction than in vertical direction if the apreture is narrower
in horizontal direction and wider in vertical direction. This leads to a rather bizzare prediction that for
infinitely wide slit in vertical direction the image is slit that is infinitely wide in the horizontal direction.
The reason why we do not observe this commonly in experiment is because the approximation that for all
~r, ~x and ~y are small does not apply anymore, and the difraction pattern has to be calculated otherwise.
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7.3.4 Two slits

To describe two slits, we need to somehow just replicate and displace the aperture function from previous
problem for a single slit. This can be elegantly done using the convolution. The two slits at positions ~y1

and ~y2 can be described as
a2(~y) = a ∗ g(~y)

where
g(~y) = δ(~y − ~y1) + δ(~y − ~y2)

The Fourier transform is
F{a ∗ g} = F{a}F{g}

We already calculated both these transforms. Hence the product is

F{a ∗ g} = Awh sinc
(πx1w

λD

)
sinc

(
πx2h

λD

)(
e−i

~k·~y2 + e−i
~k·~y2
)

Hence the intensity on the image screen is

I =
1

16π2D2
16A2w2h2 sinc2

(πx1w

λD

)
sinc2

(
πx2h

λD

)
cos2

(
2π~x

λD
· (~y2 − ~y1)

)
7.3.5 Diffraction Grating

Diffraction grating characteristic follows exactly the same analysis as above, but g(~y) is now

g(~y) =

N∑
n=−N

δ(~y + n~l)

where ~l = lŷ1 is the displacement vector between two slits of the grating (I choose for all the slits to be
ordered in the horizontal direction). Then

g̃(~y) =

N∑
n=−N

ei
~k·(n~l) =

N∑
n=−N

eik1nl = e−ik1Nl
2N∑
n=0

eik1nl

This is a standard geometric series with sum equal to

g̃(~k) = e−ik1Nl
1− eik1(2N+1)l

1− eik1l

The absolute value of this squared is

|g̃(~k)|2 =
(1− eik1(2N+1)l)(1− e−ik1(2N+1)l)

(1− eik1l)(1− e−ik1l)
=

1− (e−ik1(2N+1)l + eik1(2N+1)l) + 1

1− (eik1l + e−ik1l) + 1
=

=
2− 2 cos(k1(2N + 1)l)

2− 2 cos(k1l)
=

sin2
(
k1(2N+1)l

2

)
sin2

(
k1l
2

) =
sin2

(
πx1(2N+1)l

λD

)
sin2

(
πx1l
λD

)
This is a typical pattern with some big maxima with several smaller maxima in between.
Here, 2N + 1 is the total number of the slits. Therefore, the total diffraction intensity is

I =
|ã|2|g̃|2

16π2D2
=

1

16π2D2
4Awh sinc2

(πx1w

λD

)
sinc2

(
πx2h

λD

) sin2
(
πx1(2N+1)l

λ

)
sin2

(
πx1l
λD

)
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7.3.6 Circular Aperture

The circular aperture has aperture function

a(~y) = A,∀~y : |~y| ≤ R

a(~y) = 0,∀~y : |~y| > R

where R is the radius of the aperture, which is centered around the origin.
We now do the Fourier transform. To make the integration sensible, we do the integration in planar polar
coordinates, with r = |~y| and φ the angle from the y1 axis. Then

ã(~k) =

∫ ∞
0

∫ 2π

0

a(~y)e−i
~k·~yrdφdr =

∫ R

0

r

∫ 2π

0

e−i|
~k||~y| cos(φk−φ)dφdr

where φk is the angle from x1 axis to point ~x1. Substituting α = φk − φ and z = |~k||~y| = 2πrxr
λD where rx is

the distance of the point ~x from the origin projected on the image screen. Then

ã(~k) =

∫ R

0

rdr

∫ φk−2π

φk

−dαe−iz cos(α)

Since we complete a full circle in the inner integral, we can rewrite the limits (using the minus side inside
the integral) as

ã(~k) =

∫ R

0

rdr

∫ 2π

0

e−iz cos(α)dα

The inner integral is the integral representation of the Bessel function of the first kind of order 0.

Bessel functions of the first kind Bessel function of the first kind of the zeroth order has integral
representation

J0(z) =
1

2π

∫ 2π

0

e−iz cos(α)dα (78)

The Bessel functions of the first kind are connected via recursion relation

d

dz
(znJn(z)) = znJn−1(z) (79)

Also, Bessel functions are solutions of differential equation(
d2

dz2
+

1

z

d

dz
+

(
1− n2

z2

))
f(z) = 0

where n is the order of the Bessel function. This differential equation has two solutions, and the second
one is the Bessel function of the second kind, which is often written as Yn(z).
In our problem, we then have

ã(~k) =

∫ R

0

rdr2πJ0(z) = 2π

∫ R

0

rJ0(|~k|r)dr = 2π

∫ |~k|R
0

z

|~k|
J0(z)

dz

~|k|
=

2π

|~k|2

∫ |~k|R
0

zJ0(z)dz

Using the recursion relation

ã(~k) =
2π

|~k|2

∫ |~k|R
0

d

dz
(zJ1(z)) dz =

2π

|~k|2
[zJ1(z)]

|~k|R
0

Since J1 does not diverge at zero

ã(~k) =
2π

|~k|2
|~k|RJ1(|~k|R) = 2π

J1

(
|~k|R

)
|~k|
R

= 2π
J1

(
2πrxR
λD

)
2πrx
λDR
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7.3.7 Angular Resolution

We can rewrite the above relation with angle from the centre of the aperture θ (for rx << D) as (k0 = 2π
λ )

ã(~k) = 2π
J1 (k0θR)

k0θ
R

We say that two objects are just resolved when the first diffraction pattern minimum lies in the zeroth
maximum of the other object. The first minimum of Bessel function of the first kind and of the first order
appears approximately at 1.22π. This means that the minimum angle separation between the objects has
to be ∆θ such that

1.22π = k0∆θR

∆θ =
1.22λ

2R
= 1.22

λ

d

where d is the diameter of the circular aperture. Therefore, telescopes can resolve more if they are larger.
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