
PX274 - Experimental Particle Physics Formulae list and derivation

Contents

1 Constituents of the Standard Model 2
1.1 Matter Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Force Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Higgs Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Common Composite Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Special Theory of Relativity in Particle Physics 4
2.1 Fourvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Scalar Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Mandelstam Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Two Proton Collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Basic Interaction of Particles in Matter 7
3.1 Rutherford Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Ionization Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Delta rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Bragg Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Thick Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Brehmstralung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Hadronic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Multiple Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Detectors 13
4.1 Detected Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Observable Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Electron/positron Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Low Energy Hadronic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 High Energy Hadronic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Tracking Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Photographic Film/Emulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Bubble Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Wire Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.4 Silicon Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Momentum and Direction Determination in 2D . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5.1 Scintillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.2 Sampling Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Accelerators 19
5.1 Linear Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Folded Tandem Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Voltage Flippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Circular Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Cyclotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Experimental Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Colliders 23
6.1 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Particle Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2.1 Signal Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Local P-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Final Remarks 24
7.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Cyclic collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



PX274 - Experimental Particle Physics Formulae list and derivation

1 Constituents of the Standard Model

Standard model of particle physics is a system of relationships between different elementary particles that
create all matter and forces.
As it is a model, it does not search for the reason why these specific particles exist, only lists them and
leaves free parameters such as their masses and charges to be assigned from measurement.
The basic classification of entities in the standard model is to divide the particles to matter particles and
force carriers.

1.1 Matter Particles

There are 12 elementary matter particles in standard model. These can be further divided into quarks,
which have colour and interact by strong force, and leptons, which are colourless.
The following table sums up quarks and leptons.

Name Symbol Mass (MeV
c2 ) Charge (e) Colour

Up quark u 2.4 + 2
3 Yes

Down quark d 4.8 − 1
3 Yes

Charm quark c 1.275× 103 2
3 Yes

Strange quark s 95 − 1
3 Yes

Top quark t 1.72× 105 2
3 Yes

Bottom quark b 4.18× 103 − 1
3 Yes

Electron e 0.511 -1 No
Electron neutrino νe ≈ 0 0 No

Muon µ 105.7 -1 No
Muon neutrino νµ ≈ 0 0 No

Tauon τ 1.78× 103 -1 No
Tauon neutrino ντ ≈ 0 0 No

It is important to note that the mases of the particles that are created from these particles are not just the
sum of the masses of the constituent particles, as there is quite a bit of mass created by the binding energy
of the quarks and other constituents.
The charge is the electromagnetic charge, which is a real number. Colour is a changing property of the
particle, and has one of three possible values - red, green, blue, with anti-particles having anti-colours
anti-red, anti-green and anti-blue. The quarks can be bound only in the states where the overall colour is
white, which can be obtained from three particles having red, green and blue colour or two particles with
colour and anti-colour pair.
Sometimes, the pentaquark states are also observed, even though very rare.
All matter particles are fermions and they are in fact massless, but mass is produced as a consequence of
interaction with the Higgs field, and the mass itself only represents the strength of coupling of the particular
particle to the Higgs field.

1.2 Force Carriers

The force carriers are particles that mediate the forces. They are created and absorbed in every interaction
of particles, with their lifetime proportional to the inverse of their mass. Therefore, massless particles can
mediate interaction without any limiting range, while massive particles have range limit.
The force carrier particles (also called gauge bosons) are summarzized in the table below.

Name Symbol Mass (GeV
c2 ) Charge (e) Colour

Photon γ 0 0 No
Gluon g 0 0 Colour+anti-colour pair (Not white)

W± boson W± 80.4 ±1 No
Z zero boson Z0 91.2 0 No

The strongest force is the strong force. Then, the electromagnetic force, because it has much higher range
then the weak force, even though coupling of most particles to the weak field is stronger. The last is the
weak force, which is however very important, because it breaks the conservation of flavour, and thus enables
more bizzare interactions to occur.
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1.3 Higgs Boson

Higgs boson is a boson of mass ≈ 125 GeV
c2 , which interacts with almost all particles to give them their

rest mass. This is not the mass that is present in, for example, proton, as most of the mass of the proton
is due to the binding energy of the quarks.
Higgs boson is hard to understand and is not covered by this module.

1.4 Common Composite Particles

Some of the most common composite particles (which are always colourless/white) are listed in the table
below.

Name Symbol Contents Angular Momentum Mass (MeV
c2 ) Charge

Proton p uud 0 938 +1
Neutron n udd 0 940 0
Pion ± π± ud̄/ūd 0 140 ±1

Pion zero π0 uū+dd̄√
2

0 135 0

Kaon ± K± us̄/ūs 0 490 ±1

Kaon zero K0 ds̄+d̄s√
2

0 498 0

Delta ∆ uud 1 1232 +1

1.5 Conservation Laws

Conservation laws help us construct and constraint reactions that can occur between different particles.
This is a quick list of quantitites conserved in particle reactions

• Energy

– Total energy of a system is always conserved

• Momentum

– Total momentum of a system is always conserved

• Electric charge

– Total electric charge is always conserved

• Colour

– Total colour of the system is always conserved (sum of reds, greens and blues, with anti-colours
counting as -1 for given colour)

• Quark flavour (not universal)

– Number of quarks of given type is conserved, unless the charged weak force bosons mediate the
reactions

• Lepton flavour (not universal)

– Number of leptons of specific type (heavy leptons + neutrinos of that type) is conserved unless
charged weak force bosons mediate the reactions

• Baryon number

– Total number of three quark systems is conserved - required by colour conservation.

• Lepton number

– Total number of leptons is always conserved
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2 Special Theory of Relativity in Particle Physics

2.1 Fourvectors

Fourvectors are ordered quartets of numbers that tranform by Lorentz transformation between different
inertial frame. The fourvectors have one temporal component and three spatial components. The Lorentz
transformations for four vector a are as follows (for inertial frame speed direction in x direction)

a′t = γ(at − βax)

a′x = γ(ax − βat)

a′y = ay

a′z = az

where

γ =
1√

1− β2

and
β =

v

c

where v is the speed of the inertial frame in positive x direction, and c is the speed of light.
The Lorentz transformation can be also expressed in the matrix form as

a′t
a′x
a′y
a′z

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




at
ax
ay
az

 = La

Some of the common fourvectors are now briefly introduced. The fourinterval (ct, x, y, z) = (ct, ~r), where
t is the time of an event, and ~r is the location of an event. The fourmomentum (Ec , ~p) is the measure of
total energy of the particle.

2.2 Scalar Product

The scalar product for fourvectors is defined as

a · b = atbt − axbx − ayby − azbz = atbt − ~a ·~b

where ~a and ~b are the spatial vectors of the fourvector. This can be also expressed using the so called
Minkowski metric as

a · b =
(
at ax ay az

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




bt
bx
by
bz

 = aT ηb

where the operation implied is the matrix multiplication.
The scalar product is particularly useful because its value is a Lorentz invariant - it is the same for all
inertial frames of reference. To see this, consider

a′ = La,b′ = Lb

a′ · b′ = (La)T η(Lb) = aT (LT ηL)b

But, since L is a symmetric matrix

LT ηL = LηL =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 =
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=


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




γ −βγ 0 0
βγ −γ 0 0
0 0 −1 0
0 0 0 −1

 =


γ2 − γ2β2 0 0 0

0 γ2β2 − γ2 0 0
0 0 −1 0
0 0 0 −1


From our definition,

γ =
1√

1− β2

γ2 − γ2β2 = γ2(1− β2) = 1

and thus

LT ηL =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = η

Hence
a′ · b′ = (La)T η(Lb) = aT (LT ηL)b = aT ηb = a · b

And thus the scalar product is an invariant.
One of more useful quantities that is Lorentz invariant is the Lorentz invariant mass of the system, which
is obtained as the magnitude (that is, scalar product with itself) of the fourmomentum

p · p =
E

c

2

− p2 =
1

c2
(
E2 − p2c2

)
= m2c2

where m is the rest mass of the object (using Einstains relation for total energy E of an object)

2.3 Mandelstam Variables

Since the total energy in each inertial frame is an additive property and spatial momentum is also additive,
we can represent the total fourmomentum of a certain system as the sum of the fourmomenta of the
constituents of the system.
Since the total energy and momentum is conserved in each inertial frame, we can say that the fourmomen-
tum of a system is also conserved in each inertial frame. Therefore, the magnitude of this fourmomentum
is always conserved and is a Lorentz invariant, which makes it a very useful constant.
The general collision of two particles can occur in one of these three ways.

(a) s-channel (b) t-channel (c) u-channel

In all cases, the magnitude of the sum of the fourmomenta before the interaction must equal the sum of
the fourmomenta after the interaction. However, for t and u-channels, additional relationships must apply,
leading from the analysis of each vortex - creation and anihilation of mediating particle. For the t-channel,
with fourmomentum of the mediating particle labeled as pi, assuming that the mediating particle emerged
from particle 1

p1 = pi + p3

p4 = p2 + pi

Hence, by eliminating pi
p1 − p3 = pi = p4 − p2

And thus
(p1 − p3)2 = (p2 − p4)2

5
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is a constant in any inertial frame. We could also change the sides of momenta p2 and p3 in equation
before to get

(p1 + p2)2 = (p3 + p4)2

which applies to all channels. Similarly for u-channel

p1 = pi + p4

p3 = p2 + pi

(p1 − p4)2 = (p2 − p3)2

And this is again compatible with
(p1 + p2)2 = (p3 + p4)2

For the s-channel, this is the only equation we can derive, as analysis by vortices gives

p1 + p2 = pi = p3 + p4

(p1 + p2)2 = (p3 + p4)2

But, in this case, the interacting particle has all the fourmomentum of the system, therefore the highest
rest mass.
The magnitude of the fourmomentum of the particle is often denoted by a symbol corresponding to the
name of the channel of interaction, i.e. for t-channel

t = (p1 − p3)2

For u-channel
u = (p1 − p4)2

and for s-channel
s = (p1 + p2)2

2.3.1 Two Proton Collision

Assume that two protons are incident on each other with equal and opposite momenta of 6500 GeV
c . As

these momenta are much higher than the rest mass energy of the proton, we can say that the total energy

of the protons is E
c ≈

p
c = 6500 GeV

c . The s-channel particle has four momentum (using x-axis as the axis
of the collision)

p1 + p2 = [(6500, 6500, 0, 0) + (6500,−6500, 0, 0)]
GeV

c
= (13000, 0, 0, 0)

GeV

c

hence

s = (p1 + p2)2 = M2c2 = 130002 GeV2

c2

where M is the rest mass of the created particle. Hence

√
s = Mc = 13000

GeV

c

M = 13
TeV

c2

2.3.2 Cosmic Rays

Cosmic rays are high energy protons travelling through space. They themselves cannot decay, but they can
react with photons of the cosmic microwave background. Assume that a head on collision of proton and
photon occurs, labeling Eγ the energy of the photon, Ep the energy of the proton and p the momentum
of the proton. Setup the problem so that proton travels in positive x direction and photon in negative x
direction.
The momentum of the photon, as it is massless, is −Eγc in the x direction. Hence

s = (p1 + p2)2 =

[(
Ep
c
, p, 0, 0

)
+

(
Eγ
c
,−Eγ

c
, 0, 0

)]2

=

(
Ep + Eγ

c

)2

−
(
pc− Eγ

c

)2

6
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s =
E2
p

c2
+ 2

EpEγ
c2

+
E2
γ

c2
− p2 + 2

pEγ
c
−
E2
γ

c2

s =
1

c2
(E2

p − p2c2) + 2
Eγ
c2

(Ep + pc)

For very high energy proton, Ep ≈ pc, hence (also using general relationship E2 − p2c2 = m2c4)

s ≈ m2
pc

2 + 4
Eγ
c
p

The important reaction that can occur is when the centre of mass energy
√
s is high enough to create a ∆

particle. This occurs in case when

m2
∆c

2 = m2
pc

2 + 4
Eγ
c
p

(m2
∆ −m2

p)c
2 = 4

Eγ
c
p

p =
m2

∆ −m2
p

4Eγ
c3

Since photons of microwave background are photons of thermal energy for temperature approximately 2.7
K, their energy is Eγ ≈ kBT ≈ 2.3× 10−4eV . Hence

p ≈ 0.7× 1012 GeV

c

which is effectively the upper limit on the momentum of cosmic protons (any other protons interact with
the background and create ∆ particles)

3 Basic Interaction of Particles in Matter

3.1 Rutherford Scattering

In Rutherford scattering, a positively charged particle (of charge ze) is incident on a nucleus of charge Ze.

We assume that the particle has such energy that the movement of the nucleus can be negélected. Assume
that the particle arrives along a line with nucleus at distance b from this line.
The line forms effectively the direction of the z axis in the spherical polar coordinate system, with origin
at the nuclues. Since we already use z for atomic numbers, I will rename this axis as the x axis, although
it works as a z axis. We will assume a cylindrical symmetry (same behaviour for all longtitude angles φ).
Because the nucleus is not moving, the potential on the particle is central and hence the angular momentum
is conserved. Also, as a consequence of this, the whole motion is realized in one plane. Let θ be the colatitude
taken from the direction of the x axis, with increasing x in the direction of movement of the particle.
The magnitude of the angular momentum of the particle at position ~r with speed ~v is

L = m|~r × ~v|

Since the motion is in the plane, ~ω ⊥ ~r and hence

L = −mωr2

where ω = |~ω| = dθ
dt and r = |~r|. The minus sign appears because at the beginning, the momentum L is

pointing in the negative direction (θ decreases as time passes).
Hence

−ωr2 = |~r × ~v|

At the beginning of the movement, for particle at distant approach to nucleus at distance x = d >> b,
~r = (−d, b, 0) and ~v = (v0, 0, 0), and therefore

~r × ~v = (0, 0,−bv0)

|~r × ~v| = bv0

7
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and therefore

r2 = −bv0

ω
= −bv0

dθ
dt

The force in the direction perpendicular to the movement (call it the y direction) is

Fy = m
dvy
dt

= ze
Ze

4πε0r2
sin θ = − zZe2

4πε0bv0
sin θ

dθ

dt

Changing the derivatives
dvy
dθ

= − zZe2

4πε0bmv0
sin θ

Hence

vy(θ) = C +
zZe2

4πε0bmv0
cos θ

where C is integration constant. For θ → π, vy → 0 so

0 = C +
zZe2

4πε0bmv0
cos(π)

C =
zZe2

4πε0bmv0

So

vy(θ) =
zZe2

4πε0bmv0
(1 + cos θ)

As the nucleus does not move, the scattered particle at big distance from the nucleus must have the same
energy as the incident particle, and therefore also the same speed. Hence the final velocity of the particle
is

~vf = (v0 cos θf , v0 sin θf , 0)

Where θf is the final outgoing angle of the particle. Using the equation for vy at θf

zZe2

4πε0bmv0
(1 + cos θf ) = v0 sin θf

sin θf
1 + cos θf

=
zZe2

4πε0bmv2
0

But
sin θf

1 + cos θf
=

2 sin θ
2 cos θ2

1 + cos2 θ
2 − sin2 θ

2

=
2 sin θ

2 cos θ2
2 cos2 θ

2

= tan
θ

2

Now, we would like to determine standard quantity that represents scattering of particles, the differential
cross-section. Differential cross-section corresponds to the ratio of an area dσ from which the particles are
scattered into the solid angle dΩ at some direction θ. We can see that the direction θ only depends on the
initial distance from the nucleus b and velocity squared of the particle v2

0 . Hence we can parametrize the
are dσ as

dσ = bdφdb

where φ is the lattitude angle.
The solid angle element in direction θ is

dΩ = sin θdθdφ

Since scattering is independent of φ, we can than state

dσ

dΩ
=

b

sin θ

db

dθ

And

b =
zZe2

4πε0mv2
0 tan θ

2

db

dθ
=

zZe2

4πε0mv2
0

−1

tan2 θ
2

1

cos2 θ
2

1

2
= − zZe2

4πε0mv2
0

1

2 sin2 θ
2

8
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Hence
dσ

dΩ
= − b

sin θ

zZe2

8πε0mv2
0 sin2 θ

2

Substituting for b

dσ

dΩ
= − 1

2 sin θ

1

tan θ
2

1

sin2 θ
2

[
zZe2

4πε0mv2
0

]2

= − 1

4 sin θ
2 cos θ2

sin θ
2

cos θ2
sin2 θ

2

[
zZe2

4πε0mv2
0

]2

= − 1

4 sin4 θ
2

[
zZe2

4πε0mv2
0

]2

The negative sign represents the fact that smaller area σ corresponds to scattering into bigger angles θ. If
we are, however, only interested in the magnitude, we can use

dσ

dΩ
=

1

4 sin4 θ
2

[
zZe2

4πε0mv2
0

]2

Interestingly, the closest approach possible by a particle is when the particle approaches head on to the
nucleus. It then approaches up to distance D, at which

zZe2

4πε0D
=

1

2
mv2

0

(all energy as potential energy)
then

D = 2
zZe2

4πε0mv2
0

And therefore
dσ

dΩ
=

D2

16 sin4 θ
2

This means that we can estimate the size of the nucleus as D by firing particles at it. This was indeed
what Rutherford have done.

3.2 Ionization Losses

Particles in matter can lose energy by many processes, with most dominant being pair/particle creation
interactions and ionization losses.
Ionization losses occur by charged particles moving through a matter and ionizing electrons of the atoms of
the matter. To find the energy given to some electron at distance b from linear trajectory of the incoming
particle, we must make several assumptions.
First, we assume that the particle is so fast that it does not change its direction of movement by the
interaction with electron very much. Second is that the interaction between the electron and the particle
occurs in such a small time that the electron only effectively starts moving after the interaction is over.
Last assumption is that the potential and kinetic energy of the electrons are negligable.
With these assumptions, we have a particle with charge ze incoming on a stationary free electron with
charge e.
The y component of the force acting on the electron is

Fy =
ze2

4πε0(x2 + b2)
sin θ

where x is the distance of the particle from the closest approach to the electron, when from electron to
particle is b (and x is therefore 0, and is therefore the origin), and θ is the angle between the vector pointing
from the electron to the particle.
sin θ can be also reexpressed as

sin θ =
b√

x2 + b2

Hence

Fy =
bze2

4πε0(x2 + b2)
3
2

9
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The momentum gained by the electron in the y direction is then

py =

∫ ∞
−∞

Fydt =

∫ ∞
−∞

Fy
dt

dx
dx =

1
dx
dt

∫ ∞
−∞

bze2

4πε0(x2 + b2)
3
2

Here dx
dt = v0 is the initial velocity of the particle. Hence

py =
bze2

4πε0v0

∫ ∞
−∞

1

(x2 + b2)
3
2

dx

The integral evaluates as (using bα = x)

I =

∫ ∞
−∞

1

(x2 + b2)
3
2

dx =

∫ ∞
−∞

1

b3(1 + α2)
3
2

bdα =
1

b2

∫ ∞
−∞

1

(1 + α2)
3
2

dα

Using another substitution α = tanφ

I =
1

b2

∫ π
2

−π2

1

(1 + tan2 φ)
3
2

1

cos2 φ
dφ =

1

b2

∫ π
2

−π2

1
1

cos3 φ

1

cos2 φ
dφ =

1

b2

∫ π
2

−π2
cosφdφ =

1

b2
[sinφ]

π
2

−π2
=

2

b2

Hence

py =
ze2

2πε0v0b

The force in the x direction is

Fx =
ze2

4πε0(x2 + b2)
cos θ =

ze2

4πε0(x2 + b2)

x√
x2 + b2

=
x

b
Fy

Hence

px =
ze2

4πε0v0

∫ ∞
−∞

x

(x2 + b2)
3
2

dx

The integral is now

I =

∫ ∞
−∞

x

(x2 + b2)
3
2

dx =

∫ π
2

−π2

b tanφ

(b2 tan2 φ+ b2)
3
2

b

cos2 φ
dφ =

=
1

b

∫ π
2

−π2
cosφ tanφdφ =

1

b

∫ π
2

−π2
sinφdφ =

1

b
[cosφ]

−π2
π
2

= 0

Therefore, the momentum is only transfered in the y direction, which corresponds to our assumptions
(particle moves so fast that equal momentum from incident and emergent particle is trasfered in opposite
directions to the electron).
The energy transferred to the one electron is then

E1 =
p2

2me
=

p2
y

2me
=

z2e4

8π2ε20mev2
0b

2

where me is the mass of the electron.
To calculate the total energy deposited in the material, we need to integrate over all reasonable radii b and
include loss due to all electrons. Let the trajectory of the particle be the x axis as before and lets define
cylindrical coordinate system with radius b in the yz plane and angle φ in the same plane and x as the
third, cartesian coordinate. The total number of electrons in a cylindrical shell of height dx and radius b
and width db is

dN = 2πbdbdxn

where n is the density of the electrons.
The energy transferred to these electrons is

dE = E1dN =
nz2e4

4πε20mev2
0b
dbdx

10
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And the total energy deposited per length dx is then

dET
dx

=

∫ bmax

bmin

nz2e4

4πε20mev2
0b
db

dET
dx

=
nz2e4

4πε20mev2
0

∫ bmax

bmin

1

b
db =

nz2e4

4πε20mev2
0

ln

(
bmax
bmin

)
where bmin/max are some artificial limits. For our purposes, the limits will be defined by two considerations
- first is that if the electrons orbit too fast, they do not interact as we assumed. For frequency νe of the
electrons in orbit, their time period, as seen from the perspective of the particle, is

T ′ = γT = γ
1

νe

where γ = 1√
1−β2

( and β = v0
c ) is the Lorentz factor of the particle. If this time is about the same as the

time the particle does most of the interaction (in distance about b from the electron, hence while travelling
distance about b around the point of closest approach), the interaction is problematic and starts to be weak
(bondign effects are stronger). The time for the particle to travel b is

Tp =
b

v0

Hence
bmax
v0

= Tp,max = T ′ = γ
1

νe

bmax = γ
v0

νe
The second consideration is the quantum mechanical nature of the electron, which probably obscurs the
interaction as well. This probably occurs at distance bmin on which the wave properties of the electron
become dominant, which means that the wavelength of the electron is about λe ≈ bmin.
In the frame of reference of the particle, the electron is moving towards the particle at speed v0 and thus
has relativistic momentum

pe = γmev0

Hence the wavelength of this electron is (using de Broglie relation)

λe =
2πh̄

p
=

2πh̄

γmev0

Hence

bmin ≈ λe =
2πh̄

γmev0

And therefore
dE

dx
=

nz2e4

4πε20mev2
0

ln

(
γ2mev

2
0

2πh̄νe

)
This energy is lost from the particle. This means that if we change the meaning of E to the energy of
particle, the energy loss is (also rewritting everything in relativistic β)

−dE
dx

=
nz2e4

4πε20mec2
1

β2
ln

(
γ2β2mec

2

2πh̄νe

)
This is our very approximate form. The Particle Group version of this formula is

−dE
dx

= Kz2Z

A

1

β2

[
1

2
ln

(
2mec

2γ2β2Wmax(γ2β2)

I2

)
− β2 − δ(βγ)

2

]
For us, the exact form is not that important, important are only the qualitative analysis as follows for the
original formula.
We see that for high energies, β → 1 and the dependence is purely −dEdx ∝ ln(γ2) ∝ ln γ. But, for smaller
energies, the β parameter starts to vary and the 1

β2 dependence starts to matter. The overall behaviour is
similar to one displayed in figure below.
The specific curves vary for each particle and material, but the important feature is that the minimum
ionizing energy occurs at about γβ ≈ 3.
For particles slower than this, the ionization losses start to rise quickly and particle quickly stops afterwards.
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3.2.1 Delta rays

If the incident particle is very fast and approaches the electron at very small b, it can eject the electron at
such speed that the electron itself becomes the fast moving particle. These secondary particles are called
the ∆ rays (not to confuse with ∆ particles, which are a different type of particle).
Delta rays can be usually recognized as small trajectories of highly curving (i.e. very light) particles
beginning at the major particle trajectory.

3.2.2 Bragg Peak

Since the energy deposit of the particle first slowly decreases and afterwards rapidly increases with decreas-
ing energy of the particle, the energy deposit peaks right before the particle stops.
This peak is called the Bragg peak, and the top intensity at the Bragg peak is usually about 10 times more
than at minimum ionizing (at γβ = 3).
The particle then comes to stop. This can be used for controlled depth of deposit of energy - the energy
of accelerated particles is tuned so that they deposit most of their energy only at specific depth into the
material, where the Bragg peak occurs.

3.3 Thick Materials

3.3.1 Brehmstralung

For thick materials or very fast particles, other type of energy dissipation becomes dominant - the brehm-
stralung - braking radiation. The particle interacts with other charged particles and in the process emits a
photon. As the energy of the particle is very high, this photon can become real photon with high energy
that can then split into an electron-positron pair, which react further.
Usually, the energy is approximately equally distributed among the resultant particles, and the length
which particles travel between each emmision is approximately constant as well. This means that the
overall decrease in energy is exponential in form of

E = E0e
− x
LR

where LR is called the radiation length. The radiation length is usually smaller for lighter particles (depends
on the square of the mass of the particle LR ∝ m2). Therefore, the electrons are the strongest interacting
particles, muons less etc.
The energy of the particle when the brehmstralung becomes important vary depending on a mass, but for
electron, this critical energy is 10-100 MeV, for muon, it is about 100-1000 GeV (muon is about hundred
times more massive, hence the energy is about 10 000 times higher).
Several remarks need to be made. On average, the length between photon splitting into e+e− pair (pair
creation) is slightly longer, so we have

Lpp ≈
9

7
LR

12
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Also, it usually makes sense to define the radiation length dependent on a material, but not on the material
density. Then we have specific radiation length

X0 = LRρ

which is not dependent on the density (while LR is). Therefore, we can write

LR =
X0

ρ

3.3.2 Hadronic Interaction

Hardons (particles consisting of three or more quarks) react in the thick matter also due to the interactions
of the strong force with the nuclei. However, since nuclei are so small, the hadronic interaction length for
this interaction is about 10 times of the radiation length in the same material, i. e.

LI ≈ 10LR

and the energy goes as
E = E0e

− x
LI

Since hadrons are usually much more massive, the hadronic interaction becomes their main source of energy
loss, overweighting the radiative losses.
During the interaction, multiple mesons (more than one or pair) can be created, and the hadron can trans-
form. So, the hadronic interactions are generally much more messy than the electromagnetic radiative
interactions. Also, hardons can sometimes change into neutrons, which usually escape detection, as they
do not end up ionizing as they stop. In practice this means that only about 40 % of the initial energy is de-
posited in the material in form of ionization, compared to nearly all the energy in the case of electromagnetic
radiation.

3.3.3 Multiple Scattering

When the material is thick, the beam of particles can be scattered multiple times. Since the derivation from
Rutherford scattering is hard and only approximate, we use central limit theorem to model the resulting
distribution of angles as Gaussian, i. e.

dσ

dΩ
∝ e
− (θ−θ0)2

2σ2
θ

where θ0 is the original direction of the beam and σθ is the standard deviation parameter. The standard
deviation is usually modeled as

σθ ≈ 13.6 MeV
z

βcp

√
x

LR

(
1 + 0.38 ln

(
x

LR

))
where z is the atomic number of the particle (number of positive e charges), p is the momentum of the
particle, β and c have usual meanings and x is distance travelled in the medium and LR is the radiation
length in the medium.

4 Detectors

4.1 Detected Particles

Out of all possible particles that can be created, only a handful is usually observable in the detector. This
is because other particles are usually not stable and decay by electromagnetic or strong force, and thus
decay right after the collision, before reaching any detector. A few particles that are stable and observable
are

• Photon, γ

– Photons are not directly observable, but they can cause ionization and at sufficient energies can
split into electron - positron pair, causing what is known as electromagnetic showers

• Electron/positron, e∓

13



PX274 - Experimental Particle Physics Formulae list and derivation

– Quickly curves in magnetic fields and causes electromagnetic showers

• Muon/Anti-muon, µ∓

– Heavier but otherwise similar to electron, these particles do not curve nearly as much as electrons
and also do not usually cause electromagnetic showers until they slow down a lot, and by that
time they usually decay (by weak force to electrons/positrons)

• Tauons/anti-tauons, τ∓

– Usually decay before reaching detector, but sometimes can enter at very high energies of the
colliding particles.

• Proton, p

– Very stable and massive, protons usually do not cause electromagnetic showers, but they do
interact by hadronic interaction.

• Neutron, n

– Neutrons cannot be directly seen in the detectors, as they do not ionize, but they react by
hadronic interactions, which can create hadronic showers (analogue of EM showers)

• Pions, π±, π0

– Charged pions decay by weak force, and therefore can appear in the detector. They are lighter
than protons and heavier than positrons, so they can usually be distinguished from these. How-
ever, they can be mistaken for muons. To distinguish these, muons do not react by hadronic
interactions, while pions do. Charged pions usually decay to muons.

– Neutral pions decay by EM force, so they usually do not reach the detector, but at very high
energies they can. The decay length of neutral pion (0.3 nm) is the shortest measured decay
length. Neutral pions usually decay to photons.

• Kaons, K±,K0

– Similar behaviour as pions, but they have one strange quark instead of the down quark, making
them less stable.

4.2 Observable Interactions

The interactions we observe in detectors can be split into three categories - electron/positron interactions,
low energy hadronic interactions and high energy hadronic interactions.

4.2.1 Electron/positron Interactions

Electrons and positrons create both photons and start electromagnetic showers - the secondary photons split
into more electrons and positrons and the cycle repeats until the energy is depleted. But, when collided,
positron and electron can anihilate, which can cause an off shell momentum photon to form and then split
into colourless quark - anti-quark pair. This creates hadronic jets emergent even from quark-less collisions.

4.2.2 Low Energy Hadronic Interactions

Often creates light mesons (Kaons or Pions) by strong interaction, but not many other particles, as there
is not enough energy for their creation. Can cause nuclear decay, and are sometimes used to create a good
neutron source.

4.2.3 High Energy Hadronic Interactions

Any kind of strong interaction can take place, leading to strong hadronic showers, many jets and many
new particles. Curiously, when colliding protons, the cross-section of any reaction is very small, and have
to take a lot of data, otherwise the protons just recoil and then cause high energy interactions without any
new particle formed.

14
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4.3 Tracking Detectors

The tracking detectors try to measure the path of the particle inside it ideally without disturbing the
particle. From the path of the particle, information about the particle can be deduced.
Usually, tracking detectors try to measure path of charged particles in magnetic fields, which have well
defined behaviour (discussed later) and also usually cause ionisation, which is an easy way how to track the
movement of the particle. The only exception to this are the detectors using Cherenkov radiation, which
can in principle detect directly photons or other particles, but this is not discussed in this course.

4.3.1 Photographic Film/Emulsion

In early days of particle physics, photographic films were used to track the particles - a big block of AgI
solid (called emulsion) was placed in a magnetic field on top of a mountain for several days, and afterwards
carefully sliced. The ionization caused by the particles worked in the same way as for photography - the
tracks turned black.
Emulsions are still one of the most precise tracking devices, but the collection and reset times for these are
immensely long.

4.3.2 Bubble Chamber

Bubble chamber uses superheated liquid that creates bubbles when ionization occurs. The ionized electrons
act as condensation centres and cause the superheated liquid to boil. The bubble size can be controlled
by the pressure in the liquid and thus the bubble chamber can be well calibrated using known sources of
particles with stable energy (such as radioactive decay with 7 MeV α particles etc.).
The liquid needs to be again as light as possible to prevent from unwanted interactions with the particles.
Therefore, liquid hydrogen is often used, which is quite dangerous and usually requires preventive measures
to be taken.
Otherwise, the bubble chamber is much faster than the emulsion and can be made much bigger and even
automatic - automatic photos taken at some time interval. This means that bubble chamber needs very
good optics. The Delta rays can be used to check the direction of a magnetic field and thus find the charge
of the particle/direction of movement of the particle.
The typical operation of bubble chamber is up to frequency of some Hz.

4.3.3 Wire Chamber

Wire chamber uses gas ionization which emits electrons. These electrons are then collected by the positively
charged wires which run in the chamber. This means that the ionization can be pretty directly measured
and directly transferred to electronic signal. This enables wire chamber to have measurement frequency
of several MHz, which is probably the fastest collection time for relatively continuous track information.
The designs of wire chamber vary but they usually need to be big because the electron response for a
particle is small (not many electrons generated in the gas by its ionization), hence the precision must be
gained by particle travelling for relatively long time. But, since the gas is so light, little to no scattering
and brehmstrahlung occur in this detector. The resolution is similar to the bubble chamber, only slightly
worse.

4.3.4 Silicon Detectors

Silicon detectors use silicon diodes that are under voltage just before breakdown. When a particle ionizes
the silicon inside the diode, electron-hole pair is created and accelerated towards the ends of the diode,
creating a signal.
The resolution of silicon detectors is usually about 20 - 30 µm, which is about 10 times worse than that of
bubble/wire chamber, but the collection time is very fast (about 40 MHz), slightly more than wire chamber,
and the silicon chips are relatively cheap.
But, because silicon is dense, layered structure needs to be used to achieve tracking without scattering.
There are two geometries for the layers commonly used - strip and pixel detectors. Strip detectors use array
of long strip diodes to collect the data, thus only receiving one dimension of the direction of movement.
Pixel detectors detect in both directions, but use much more cables, which reduces the precision of the
experiment and also is expensive. Usually, two strip detectors, perpendicular in strip direction to each
other, are rather used (2L of wires instead of L2 of wires).
The response density (number of electrons ionized per particle) is good, around 2300 e− per particle in
common detectors (about 300 µm thick with diode separation about 80 µm).
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4.4 Momentum and Direction Determination in 2D

We now present a few derivations for the error in momentum and direction of a particle in 2D detector -
usually composed of multiple one layer detectors.
Lets start with the direction. The direction of particle in 2D can be determined by the angle θ between the
trajectory of the particle and the detection plane of the strip detector. For two points in two consequent
strip detectors separated by distance L and measuring position in the x direction, the angle is

θ = tan−1

(
D

L

)
where D = x2 − x1 and x1/2 are the positions measured by detector 1/2.
Usually, the particles move very fast and almost normal to the plane of detection, so

tan−1

(
D

L

)
≈ D

L

Therefore, the error of direction due to uncertainty in x1 is

∆θ1 ≈
∂θ

∂x1
∆x1 = −∆x1

L

and

∆θ2 ≈
∂θ

∂x2
=

∆x2

L

if we assume that the detectors are the same with ∆x = ∆x1 = ∆x2, the overall error in θ due to detector
uncertainty is

σθ,D ≈
√

∆θ1 + ∆θ2 =
√

2
∆x

L

But, we have also the scattering term σθ,S , which decreases with the momentum of the particle. The overall
error in the direction is therefore

σθ ≈
√
σ2
θ,D + σ2

θ,S

And is very high for slow particles, which scatter a lot, but reaches σθ,D in limit p → ∞, because there
σθ,S → 0.
After the initial direction of the particle is determined, the magnitude of its momentum can be gained from
the curvature in the magnetic field. For charged particle in magnetic field

−zevBêr =
d~p

dt

which leads to (using standard circular geometry)

r =
p

qB

where r is the radius of the trajectory of the particle.
Now, consider three equally spaced detectors with distance L

2 between each of them. The particle swipes
three points in these detectors, which form vertices of an approximately isoscales triangle (for a fast particle
that does not curve much). The geometry is similar to the one displayed in figure below.
The distance r can be obtained from the Pythagoras theorem

r2 =
L2

4
+ (r − s)2

where s is also called the sagita. Hence

r2 =
L2

4
+ r2 − 2rs+ s2

2rs =
L2

4
+ s2

r =
L2

8s
+
s

2

16



PX274 - Experimental Particle Physics Formulae list and derivation

Since s is usually quite small, we can write

r ≈ L2

8s

and hence

p =
L2qB

8s

The dominant error here will be the error in determination of the sagita, which is approximately the error
in determination of position in the detectors ∆x. So, ∆s ≈ ∆x. The error in momentum determination is
then

∆p ≈
∣∣∣∣∂p∂s

∣∣∣∣ =
L2qB

8s2
∆s ≈ p

s
∆x

We can inversly express sagita to gain error that is only dependent on p, so

s =
L2qB

8p

and

∆p =
p

L2qB
8p∆x =

8p2

L2qB
∆x

and the relative error in momentum
∆p

p
=

8p

L2qB
∆x

This means that larger detectors are much better at determination of the momentum than smaller detectors.
Generally, anyway that we can measure more curvature yields higher precision in momentum.
In real detectors, multiple layers similar to this one are used and the agregated result is used, typically
with precission about 7 % (ATLAS), achieved from individual measurements typically with precision 65 %
(very bad).

4.5 Calorimetry

Calorimeters try to slow all particles to level when they start to ionize matter. Then, the calorimeters try
to measure the total ionization and hence the total energy of the particle incident on the calorimeter.
Therefore, calorimeters need to absorb all secondary particles created by the particle, and therefore need to
be several radiation lengths/hadronic interaction lengths long. Usually, this requirement makes calorimeters
the biggest part of particle detector.
As the radiation length is approximately tenth of the hadronic interaction length, calorimeters are usually
split to EM calorimeter, which is rather thin and only measures energies of electrons/positrons and photons
(and π0 particles), and hadronic calorimeter, which is bigger and measures energies of hadron interacting
particles. Usually, the EM calorimeter is much more precise, because the hadronic calorimeter suffers from
the undermeasurement of energy by caused by escaping non-ionizing neutrons.
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Usually, the relative error in the energy determined for the particle is(σE
E

)2

=

(
a√
E

)2

+

(
b

E

)2

+ c2

where a√
E

term is due to the Poissonian distribution of the generated electrons (electron ionization is

approximately random Poissonian process and number of generated electrons is roughly proportional to
the energy of the incident particle E) and is usually called the sampling term. Term b

E is due to noise
generated by extra electrons, which becomes smaller as the particle becomes more energetic, and c is the
constant calibration term.

Tipical values for a, b and c would be a = 0.028

√
GeV
c2 , b = 0.12 GeV

c2 and c = 0.003.
Between common materials to use for calorimetry are dense materials that have small radiation and hadronic
interaction lengths, such as iron (for particular detector thickness LR ≈ 1.8cm, LI ≈ 17cm), copper (similar
to iron), polyethylene (LR ≈ 50 cm, LI ≈ 88 cm) or lead tungstate, PbWO4 (LR ≈ 0.9 cm, LI ≈ 20 cm).
Generally, LI decreases as number of nuclei increases, while LR decreases as number of electrons decreases,
which means that

LI ∝
1

density

LR ∝
1

Z × density
Usually, we need at least 10 lengths to have some sort of consistent output. This is usually what is used
for hadronic calorimeters, as their readings are not very precise anyway. However, EM calorimeters have
usually many more radiation lengths, commonly about 25 LR, which allows for reasonable precision and
capture of all EM showers, while still smaller than the hadronic calorimeter.
The sampling term of the calorimeter depends largerly on the material used, for example lead tungstate
generates very small response, and thus have higher a.

4.5.1 Scintillation

When the particles ionize the material of the calorimeter, the ionization have to be somehow measured.
Because calorimeters are so big and try to be very homogeneous, we cannot do the same design as in wire
chamber. So, calorimeters are usually made from material which scintillates.
The ionized electron in the material is effectively in some very high orbital of its original atom. As it comes
back to its original level, it emits light. If the material is transparent to this light, the light travels to the
boundary of the material in random direction, where it is then read out.
Again, the amount of light measured is proportional to the ionization, so we have our information about
the energy of the particle, although the calorimeter needs to be calibrated.
It should be noted that only the light at frequencies that are transparent to the material emerges. The
relation to the original energy can be estimated from the materials science.
Also, as the light is emmited in random direction, there is no information about the momentum of the
particle in the calorimeter.
To boost the output of the calorimeter, we can use internal reflection geometry so that we can read only
one side of the calorimeter and still receive response from the majority of the calorimeter.
Anyway, calorimeters always need to be calibrated, and thus always have the c part of the error, which
limits them at high energies.
The materials of the scintillators can be potentially different from the absorbers of the calorimeter, and
then we need some layered structure of absorber and scintillator. Polyethylene (doped) is a classic cheap
scintillator, which has good response but is not very dense, which makes it a typical choice for layered
sampling calorimeter. Crystals, such as sodium iodide, have very strong response (as much as 80 000
photons for 1 MeV of ionization energy), but have slow readout (250 ns per cycle). Lead tungstate has very
small response (200 photons per MeV), but are so fast that the limitation of 40 MHz of the electronics is
higher than that of the readout time.

4.5.2 Sampling Calorimeters

Sampling calorimeters try to vary the absorbing part of the calorimeter with scintillating part of the
calorimeter, with every scintillating part being read out separately. The advantage is that we have some
sort of spatial information about the energy deposit in the calorimeter. Sometimes, even small wire chamber
layer can be included for some tracking information. This than enables for example differentiation between
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primary and secondary electrons. The disadvantage is of course that the layered structure is inhomogeneous,
and the calibration error of the calorimeter is thus increased.

5 Accelerators

The cross-section of reaction in which a massive particle appears is much higher if the energy of the particles
is at least close to the rest mass of the particle occuring. Therefore, if we want to create some particles, we
generally need a way how to increase the energy of particles beyond the natural limit of about 7 MeV of α
particles from radioactive decays - we need to use particle accelerators.
The only viable way how to accelerate the particles is using electrical voltage, and thus only charged
particles can be accelerated. Furthemore, from the form of Lorentz force F = q( ~E + ~v × ~B) it is clear
that the magnetic field cannot increase the energy of the particle. This means that we need big electric
fields/potential differences to accelerate the particles.

5.1 Linear Accelerators

Linear accelerators use acceleration of charged particles along a line. First type of such accelerator could
use a simple static electric field. This type of accelerator is usually limited by dielectric brakedown, which
limits it to maximum potential difference about 5 MV. This voltage can be achived in multiple ways.
Slightly smaller but still big voltage can be achieved with Van der Graaf generator, and said 5 MV can be
achieved with Cockroft-Walton diode ladder, which is a repeating circuit of diodes and capacitors which
runs on alternated current and only allows the charging of capacitors. The top limit of this is dependent
on the diode quality, but upper limit is the dielectric breakdown.

5.1.1 Folded Tandem Accelerator

Folded tandem accelerator starts by accelerating H− atom across the maximum voltage towards the pos-
itively charged anode. When the atom gets close to the anode, the electrons tend to strip away from the
atom, leaving only the proton, which is repelled from the anode, and thus travels the voltage again in the
opposite direction. Therefore, the potential difference travelled is effectively doubled.

5.1.2 Voltage Flippers

To avoid the dielectric breakdown, alternating voltage can be used. The design is then such that tubes of
metal are connected to an alternating source, with neighbouring tubes connected to the opposite voltage
sign. Then, if the electron travels through tubes at the same frequency at which the voltage changes, the
electron is continuously accelerated.
For the oscillating field, dielectric breakdown is smaller problem, as electrons have not enough time to
properly ionize and accelerate away from the atoms.
This design can be further imporoved by creating resonant cavities that capture the electromagnetic radi-
ation created by the oscillating fields and thus create extra electric field that can add to the acceleration
of the particle.
The cavity radius must satisfy r = 2.4c

ω .
However, because the electron is accelerated, the length of the tubes have to change along the accelerator.
This is generally a problem, but for highly relativistic particles, the speed does not change much even when
the energy of the particle keeps increasing. Therefore, if particle is light, such as electron, it can quickly
reach the relativistic regime and the tubes can be identical.
The change in speed per change in energy can be calculated as

dv

dE
=

1
dE
dv

=
1

d(γmc)
dv

=
1

mcβγ3

Hence for relativistic particles, γ →∞ and dv
dE → 0.

The synchronisation of all cavities is critical for proper functionality of this accelerator. Otherwise, they
are limited only by the length.
Usually, voltage flippers can create potential difference about 30 MV per meter of their length.
Since the particles only accelerate in certain phase, if they fall out of phase, they are decelerated until again
in phase. This means that all particles are kept in a bunch. What can happen is that too many particles
are pushed into a single bunch and their repulsion causes the bunch to spread - this is called the beam blow
up.
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To control transverse spread of the beam of particles, magnetic lenses can be easily used.

5.2 Circular Accelerators

The problem with the size of the accelerator can be partially solved if we create a circular track for the
particles, so that they can circulate through the potential difference several times. There are essentially
two geometries for circular accelerators - cyclotrons and synchrotrons.

5.2.1 Cyclotron

Cyclotrons consists usually of two half-cylindrical shells with a gap in bewteen them (see figure below,
where the particle trajectory is the dashed line)

(a) Top view (b) Side view

The voltage on the cylindrical conducting shells changes periodically so that the particles are always
accelerated by the electrical field.
The radius of the orbit is

r =
p

qB
=
γβmc

qB

The period of the orbit is then

T =
2πr

βc
=

2πγm

qB

For small speeds, γ → 1 and

T → 2πm

qB

which is independent of the particle speed and radius - the orbits are isochronous.
This can be generally achived if the B field is not homogeneous, but rather a function of radius so to follow
B = γB0. From the original expression

r = γ

√
1− 1

γ2

mc

qB√
γ2 − 1 =

qBr

mc

γ2 − 1 =
(qBr)2

(mc)2

γ2 =
(mc)2 + (qBr)2

(mc)2

γ =
qBr

mc

√
m2c2

q2B2r2
+ 1

Assume that the cyclotron would aim to accelerate the particles to the speed of light. It would start from
classical regime with condition

rf =
mc

qB0

where rf would be the radius of the orbit when the particle reaches speed of light, if it moved classically.
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where B0 is the magnetic field near the centre. Hence

mc

q
= rfB0

and the previous relation for γ is

γ =
Br

B0rf

√
1 +

(
B0rf
Br

)2

Hence

B = γB0 = B
r

rf

√
1 +

(
B0rf
Br

)2

1 =
r2

r2
f

(
1 +

(
B0rf
Br

)2
)

r2
f

r2
− 1 =

(
B0rf
Br

)2

1

B2
0r

2
− 1

r2
fB

2
0

=
1

B2r2

B2r2 =
B2

0

r2f−r2

r2fr
2

=
B2

0r
2
fr

2

r2
f − r2

Hence

B =
B0√

1− r2

r2f

which means that the magnetic field would need to diverge as closing to rf , which puts a limitation on the
energy of the accelerated particle.
The top energy of the accelerated particle is

Emax = γmaxmc
2

where γ can be obtained by backwards substitution into its definition. The ratio

Br

B0rf
=

r

rf

1√
1− r2

r2f

=
1√
r2f
r2 − 1

Hence

γ =
Br

B0rf

√
1 +

(
B0rf
Br

)2

=
1√
r2f
r2 − 1

rf
r

=
1√

1− r2

r2f

which was expected from the form of B, so everything is consistent. Hence

Emax =
mc2√

1− r2max
r2f

=
mc2√

1− r2maxB
2
0q

2

m2c2

Hence we see that by increasing either rmax or B0, we can achieve higher maximum energy Emax.
Other question is about the transverse stability of the beam of particles. The B field so far was only the z
component of the field. From the symmetry, there is no φ component, but there could be an r component
of the field.
The force acting in the z direction on the charged particle is (inside the shell) (speed for positive Bz and
stable orbit must be ~v = −vêφ)

Fz = q(~v × ~B)z = −qv(êφ × (Bz k̂ +Br êr))z = qvBr

This can be approximated for slowly changing radial component as

Fz ≈ qv
∂Br
∂z

z
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Using 4th Maxwell equation for static field without any source currents (current due to orbiting particles
is deemed negligable)

∇× ~B = 0

Hence, for the φ component

(∇× ~B)φ =
∂Br
∂z
− ∂Bz

∂r
= 0

∂Bz
∂r

=
∂Br
∂z

Hence we have

Fz ≈ qv
∂Bz
∂r

z

Using Newton’s third law, we have
d2z

dt2
=
qv

m

∂Bz
∂r

z

This is SHM for positive charge particles (such as protons), and exponential divergence for negative charge
particles (such as electrons), if the field is decreasing with radius, which it naturally is (for field between
two magnets).
Hence, the angular frequency of oscillations in the z direction is

ω2
z =

qv

m

∣∣∣∣∂Bz∂r

∣∣∣∣
For negative ∂Bz

∂r ,

ω2
z = −qv

m

∂Bz
∂r

The angular frequency of the orbit is

ω0 =
2π

T
=
qB0

m

Hence (since B0 = Bz)

ν2
z =

ω2
z

ω2
0

= − mv

qB2
0

∂B0

∂r

This is the stability condition, which is satisfied if the frequency of the oscillations in the z direction is
much higher than that of orbit of particles, hence if this is much higher than one. But, for increasing
B0, which we need of relativity, this is always negative, and hence the beam will always escape in the z
direction. Therefore, cyclotrons have limit of about γ ≈ 1.5, and afterwards the competing radial and
transverse spreading cannot be both satisfied.

5.2.2 Synchrotron

Synchrotrons are the modern standard for very high energy accelerator. The advantage of such high energies
is that the beams no longer tend to explode, as the distance between the protons in their rest frame is
increased by a factor of γ to very big distances, so they do not interact as much.
Synchrotrons are circular tubes that use changing electric and magnetic field to accelerate the particles.
The main disadvantages are the size (they need to be quite big to work with achievable B fields) and the
fact that they cannot accelerate particles from slow state - some form of preacceleration is needed. Also,
as particles have only 1 radius of orbit, the injections have to be timed carefully.
Furthemore, the synchrotron radiation (which goes as γ4) prevents electrons from being accelerated at the
synchrotron, as they reach terminal velocity by radiating due to acceleration in the circle. Therefore, only
protons or heavier particles are used.

5.3 Experimental Accelerators

There are several experimental designs on other types of accelerators. There is a debate about building
a electron/positron linear accelerator that could achieve 1 TeV, but it would require track about 30 km
long if conventional cavities are used, which is very expensive. But, there is pure energy conversion by
anihilation, which is nice experimentally.
There is also debate about using muon/anti-muon pair in the synchrotron, which should also completly
annihilate and could reach high enough energies, but are very unstable, which is a problem (but not
completly unrealistic, proton/anti-proton collider in CERN was functional and very successful).
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One of the more promising designs is to use forced plasma oscillations that momentarily create extreme
electric fields. The idea is to send a bunch of kicker particles that create an oscillation in plasma, which
then accelerates the second bunch of particles. This was done experimentally and achieved effective voltage
difference of about 50 GV/m, which is much more than the limit 100 MV/m of the conventional linear
accelerators. This might be very useful in the future.

6 Colliders

6.1 Luminosity

In particle physics, the probability of certain reaction is given in the form of the cross-section of the reaction,
which is labeled as σ. If there is N2 stationary particles in a volume with cross-sectional area A in the
direction of movement of one incident particle, the effective area taken by the stationary particles is

Aeff = N2σ

Hence, if the particle lands randomly on area A, the probability of hitting some particle is

p =
Aeff
A

=
N2σ

A

If there is a total of N1 particles incident, the expected number of reactions is

N =
N1N2σ

A

Here, we define the luminosity as L = N1N2

A , which is some form of measure of how many particles are
incident on each other. This form is for luminosity when each of particles N1 has the same probability of
hitting any place in area A, and all particles N2 are uniformly distributed in this area. In practice, we
usually have Gaussian packets, for which

L =
N1N2

4πσxσy

where σx/y are the standard deviations in corresponding directions of the bunch of the particles. So, we
have

N = Lσ

Hence the reaction rate is
R = fN = fLσ = L σ

where L is also called the luminosity, but is meant per unit time, and f is the frequency of the collider.
Hence, the total number of reactions per some time T is

NT =

∫ T

0

Rdt =

∫ T

0

L σdt

We can see that the units of L are the inverse of σ, hence it is m−2. In particle physics, these are usually
recalculated to barns, with 1 b = 10−28 m2, or femtobarns, with 1 fb = 10−43 m2 = 10−39 cm2. In LHC,
L ≈ 1034 cm−2 s−1 = 10 nb−1s−1

6.2 Particle Statistics

Usually, particle physics events are relatively rare events, which means that they obey Poissonian statistics.
Therefore, the error on the number of events is usually the square root of number of mean observed number
of events.
The Poisson distribution for large numbers can be well approximated as Gaussian distribution, with σ =√
N̄ , in accordance with the Poisson standard deviation.

The typical calculation would involve calculating the cross-section of a reaction given the integrated lumi-

nosity
∫ T

0
L dt, the efficiency of the detectors (how many collisions were detected) ε, number of background

events when the reaction did not occur Nback and total number of reactions N as

σ =
N −Nback
ε
∫ T

0
L dt

The error can be found using standard procedures, and taking error on N as
√
N .
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6.2.1 Signal Recognition

To determine the numbers N and Nback, we need to separate which events (sorted by some measures as
product energy etc.) constitute background and which constitute the sample. This can be done by choosing
an approximate area for signal and background, and calculating local event densities ρs and ρb for signal
and background. We then search for points in event space where ρs

ρb
is bigger than some chosen treshold.

Usually, ration 1 + ρs
ρb

is rather chosen as the measure, and it is called a likelihood ratio, and has some
other interesting properties, which are not discussed here.

6.2.2 Local P-Value

Local P-value can be calculated as probability that given signal occured or any other less probable signal
occured. If signal is gaussian number, then the P-value for signal N would be

P (N, x0, σ) =

∫ x0−N

−∞

1√
2πσ

e−
(x−x0)2

2σ2 dx+

∫ ∞
x0+N

1√
2πσ

e−
(x−x0)2

2σ2 dx = 1−
∫ x0+N

x0−N

1√
2πσ

e−
(x−x0)2

2σ2 dx

From the gaussian, we also define the probabilites in terms of gaussian standard deviations - σ. P-value of
5 σ (which is by convention in particle physics the minimum to declare a discovery) then corresponds to

P (5σ, 0, σ) ≈ 2.9× 10−7 ≈ 3× 10−5%

7 Final Remarks

7.1 Magnetic Field

The tracking part of a particle detector must be placed inside a magnetic field. This can be done either
by surrounding just the tracker with magnets, which then requires the investigated particles to go through
these magnets, causing errors in subsequent calorimetry. Other possibility is to put strong magnets around
the whole detector, including the calorimeters (possibly not including the muon systems, as muons easily
go through most matter). This is much more expensive.
For the geometries of magnets themselves, there are two basic setups - solenoidal and toroidal. Solenoidal
geometry uses classic coil around the collider tube, which creates magnetic field parallel to the direction
of motion of the colliding particles. The momentum of the product particles is then easy to measure in
the transverse direction. Solenoid itself however produces so called return field on the outside. This makes
it problematic when the solenoid is used inside the detector, as this return field can interfere with outer
components of the detector.
The toroidal geometry consists of a coil circled into a torus, with axis of the torus coinciding with the axis
of the collider. The momentum of the particles here is measured in the direction of movement, but since
the field is not homogeneous and linear, the momentum determination is quite hard. Toroidal geometry is
used usually inside the detector, as it does not obscure other elements of the detector.

7.2 Cyclic collisions

Other reason why cyclic colliders are currently dominating is that they can collide the same bunches several
times after they reach desired speed, using therefore much more particles from each accelerated bunch. The
linear accelerators cannot do that, and thus must invest more into the magnetic lenses and focusing the
bunches, so to reduce area A of the bunch and increase the luminosity per one collision.
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