
PX392 - Plasma Electrodynamics Revision Guide

1 Plasma Characteristics

A plasma is a state of matter in which the atoms of the matter are ionized and relatively free to move -
the dominant interaction of the particles, ions and electrons, is by the macroscopic electrodynamics forces
created by di�erences in concentrations of the ions and electrons. Usually, however, this is not satis�ed
perfectly - the particles still have some contact interactions when they collide with each other, not all the
atoms may be ionized and the concentration of the charged particles might be too low.
We will now discover a few basic properties of plasma, and use these to �gure out reasonable criteria for
systems to be in a state of plasma.

1.1 De�nitions

A few metrics should be de�ned for description of plasma - the number concentration of particles of certain
species x is nx = dNx

dV , where dNx is the number of particles x in an in�nitesimal volume dV . So, for
example, the concentration of electrons is ne. This can be related to mass density as

� = mxnx

and to charge density
�q = qxnx

Consider now that particle x is the ionized state of particle y (for example y = H, x = H+). The degree
of ionisation of y is then de�ned as

�y =
nx

nx + ny

Importantly, the degree of ionisation alone does not determine the quality of the plasma - � = 1, typical
for the Sun, and � = 0:01, typical for Earth's ionosphere, can still represent a good plasma.
Usually, ions and electrons move at very di�erent velocities in the plasma, and therefore we usually assign
di�erent temperature to each species, and denote it as Tx, Ty etc.
The usual property of plasma that it tries to restore the equilibrium state, in which all electrons and ions
are equally spread so that there is no overall motion without external force.

1.2 Electron-Plasma Oscillations

This is the classic phenomena in plasma physics. Consider that for some reason, the equilibrium of plasma
is perturbed by a slab of electrons moving away from the ions, as in Fig. 1

Figure 1: The full line represents a midplane of ions, the dashed line represents the midplane of electrons.
The displacement vector ~x points towards the midplane of electrons and ~E is perpendicular to this plane.
The dotted lines represent three di�erent integration planes.

The slab has thickness x = j~xej + j~yej = j~xij + j~yij, with j~xej = j~xij = j~yij = j~yej = x
2 . The total charge

inside the electron slab due to the displaced electrons is

Qe = �eneS(j~xej+ j~yej) = �eneSx
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where S is the surface of the slab boundary. This means that the charge in the slab of the now stranded
ions is

Qi = eneSx

as overall, the plasma is assumed to be electrically neutral. Consider now the electron slab alone. Using
Gauss's law, if we integrate over the boundary of the electron slab, we expect ~E� to be symmetrical around
the midplane of the slab (plane in the middle of the slab) and perpendicular to the midplane and boundaries
of the slab. Therefore, the integral of the electric �eld over the boundary of the electron slab is

�
Se

~E� � d~S = 2E�S =
Qe

�0

Hence, we expect

E� =
Qe

2S�0
= �enex

2�0

and in between the slabs, we expect

~E� = �enex

2�0
ŷe =

enex

2�0
x̂i

where ŷe is the unit vector in direction of ~ye. Outside the slabs, we expect

~E� = �enex

2�0
x̂e = �enex

2�0
x̂i

Similarly, but with exchanged sign, for the ions we expect

~E+ =
enex

2�0
x̂i

in between the slabs and
~E+ =

enex

2�0
ŷi = �enex

2�0
x̂i

Therefore, the total �eld in between the slabs is

~E =
enex

2�0
(x̂i + x̂i) =

enex

�0
x̂i

The �eld outside the slabs in the direction of ŷi is

~E =
enex

2�0
ŷi � enex

2�0
ŷe = 0

and similarly in the direction of x̂e outside the slabs, �eld also goes to zero. The force on an electron in
between the slabs is then

~F = m~a = �e ~E
where m is the mass of the electron and ~a is the acceleration of the electron. Usually, electrons are much
lighter than the ions, and therefore we can neglect the motion of the ions with respect to electrons, i.e.

~a =
d2~x

dt2

as the separation is only due to the motion of the electrons. Hence

d2~x

dt2
= �e ene

m�0
xx̂i = �e2ne

m�0
~x

which is an equation of simple harmonic motion with frequency

!ep =

s
e2ne
m�0

(1)

This is called the electron-plasma frequency, and these oscillations are called the electron plasma oscillations.
They can be viewed as e�ort of plasma to balance equilibrium but overshooting the equilibrium position
due to the electrons' non-zero inertia.
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1.3 Debye Screening

While electron-plasma oscillations correspond to dynamic perturbations to local charge density of the
plasma, Debye screening is an electrostatic phenomenon. Consider that we introduce some extra static
charge q into the plasma. This creates electrostatic potential in the plasma �. The electrons and ions than
move in order to minimize their potential energy. The situation is described by the Poisson equation

r2� = ��q
�0

We will describe a simple 1D model, in which we assume that �q = e(ni�ne) and try to describe the potential
far away from the inserted charge q. At non-zero temperature, the excess concentration of electrons and
ions around the inserted charge will correspond to Boltzmann distribution as

ne = n0e
� (�e�)
kBTe = n0e

e�
kBTe

where n0 is the equilibrium concentration of electrons. Similarly,

ni = n0e
� e�
kBTi

Therefore
�q = en0

�
e
�e�
kBTi � e

e�
kBTe

�
Phenomenologically, we expect that if the charge is presented into the plasma, other charges of opposite
signs will gather around it, decreasing the overall charge enclosed in the volume around the initial charge.
Therefore, we expect the excess concentration of electrons and ions to decrease as we move further away
from the charge, until it reaches the equilibrium value. Therefore, we expect �! 0 in great distances from
the inserted charge. In these distances, we can approximate

�q = en0

�
1� e�

kBTi
�
�
1 +

e�

kBTe

��
= �en0 e�

kB

�
1

Ti
+

1

Te

�

which is linear in �. Therefore, Laplace's equation linearizes to (in 1D)

d2

dx2
� =

e2n0
kB�0

�
1

Ti
+

1

Te

�
� = k2�

Which can be solved by
� = Aekx +Be�kx

Given our boundary conditions that �(x!1)! 0, we have to set A = 0, and thus we have

� / e�kx = e
� x
�D

where the decay length �D is the Debye decay length.

�D =

s
kB�0
e2n0

�
TeTi

Te + Ti

�
(2)

For the case we discussed before, when the motion of the ions is negligable, we would have concluded that
the ions stay �xed and do not change number density, i.e. ni ! n0, which happens for Ti ! 1. And we
can see that for this case �D(Ti !1) becomes

�D =

r
kB�0Te
e2n0

Usually, we would write ne = n0, as we usually mean the equilibrium concentration of electrons when
talking about plasma properties.
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1.4 Plasma Criteria

In order for plasma to behave like plasma, the electron-plasma oscillations and Debye screening must look
like material properties, not like dynamic processes of the entire system. This means that we require the
system to be much larger than the Debye screening length �D.

L� �D

Furthermore, we require that the concentration of electrons and ions is su�cient to behave like plasma.
This usually means that we need Debye screening to e�ectively take place, which can only happen if the
continuum approximation for the potential � is valid, which occurs when the number of charges around the
inserted charge is big. The number of charges around the inserted charge is called the Debye number and
can be found as number of charges in sphere of radius equal to Debye length

ND =
4

3
��3Dne =

4

3
�
(�0kBTe)

3=2

e3
p
ne

This is also called the plasma parameter, and we require ND � 1.
Lastly, we require that the electrons are pretty much free to move. This corresponds to case when the mean
time in bewteen collisions � is much bigger than a time of one cycle of electron-plasma oscillations, i.e.

� � 2�

!ep
= 2�

r
�0m

e2ne

2 Plasma Dynamics

This section explores further how plasma behaves when di�erent forces act on it.

2.1 External Magnetic Field

When an external static magnetic �eld ~B0 is present, the equation of motion of the electrons in plasma
becomes

m
d~v

dt
= �e~v � ~B0

where ~v is the velocity of the electron.
By taking a dot product with ~v, we can show that

m~v � d~v
dt

=
m

2

d(~v � ~v)
dt

=
m

2

d(j~vj2)
dt

= �e~v � (~v � ~B0) = 0

Therefore, the magnitude of ~v does not change, only its direction. By separating ~v = ~vk+~v? to components

parallel and perpendicular to ~B0, we have (as these two vectors are perpendicular to each other)

m
d~vk
dt

= �e(~vk � ~B0) = 0

m
d~v?
dt

= �e(~v? � ~B0) = �evB0r̂

where r̂ is the unit vector in direction of ~v? � ~B0.
Consider now a case when B0jjk̂. Then, ~v? = (vx; vy; 0) and we have

m
dvx
dt

= �evyB0

m
dvy
dt

= evxB0

By taking the time derivative of the second equation, we have

m
d2vy
dt2

= eB0
dvx
dt
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Substituting in from the �rst equation

m
d2vy
dt2

= �e2B2
0

1

m
vy

d2vy
dt2

= �e2B2
0

m2
vy

Therefore, we can write that
vy = A sin(!ect+ �0)

where �0 is the phase and

!ec =
eB0

m
(3)

is the electron cyclotron frequency, or the gyral frequency. By substituting back to �nd vx

vx =
m

eB0

dvy
dt

=
1

!ec
A!ec cos(!ect+ �0) = A cos(!ect+ �0)

Therefore, the electron travels with ~vk and rotates around the direction of ~B0 with frequency !ec. This
motion is called the gyration. The radius of the gyration can be estimated as follows. Since the motion in
x and y is oscillatory, v2x = !2ecx

2 and v2y = !2ecy
2 where x2 + y2 = R2 where R is the radius of gyration.

Therefore
v2? = v2x + v2y = !2ecR

2

In a thermal plasma, the gyration takes two degrees of freedom, i.e. the expected energy is 1
2mv2? � kBTe.

Therefore

R =
v?
!ec

�
r

2kBTe
m

m

eB0
=

r
2kBm

e2

p
T e

B0

In the lecture notes, we are provided with numerical result that di�ers from the one provided here - we are
given

R = 2:4� 10�6
r

T [K]

11605

1

B0[T ]
m

However, this result is relatively close to the result obtained before, so I thought I will still include it.

2.2 Drift Motion

Consider now that another force ~F acts on the electrons (with charge q) in the plasma, perpendicularly to

direction of ~B0. For the sake of brevity, lets assume that ~B0 = B0k̂ and ~F = F ĵ. Then, the equation of
motion becomes

d~v

dt
=

q

m
~v � k̂B0 +

~F

m

Lets now assume that this force changes the speed only very slowly. We can then express ~v = ~u+~vd where
d~vd
dt = 0. This leads to

d~u

dt
=

q

m
~u� ~B0 +

q

m
~vd � k̂B0 +

~F

m

We can see that this becomes a steady equation of gyration if we have

qB0

m
~vd � k̂ =

�F ĵ
m

~vd � k̂ =
�F
qB0

ĵ

By taking a dot product with ĵ

ĵ � (~vd � k̂) = ~vd � (k̂ � ĵ) = �~vd � î = � F

qB0

By taking a dot product with î

î � (~vd � k̂) = ~vd � (k̂ � î) = ~vd � ĵ = 0
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and we know that the motion along the direction of the �eld is unimpeded, as ~F is perpendicular to the
�eld. Therefore ~vd � k̂ = 0 and

~vd = (
F

qB0
; 0; 0) =

F

qB0
î

In order to represent this in basis-free notation, we recognize that ~F� ~B0 = FB0ĵ�k̂ = FB0î, and therefore

~vd =
~F � ~B0

qj ~B0j2
(4)

Therefore, the particles in plasma gyrate as usual with ~u and also undergo drift motion described by ~vd.

2.2.1 Gradient Drift

Consider now a case when the static ~B �eld slowly changes, so that around any particular point ~r0 we can
Taylor expand

~B(~r) � ~B0(~r0) +
�
(~r � r) ~B(~r)

� ���
~r=~r0

The equation of motion then becomes (in frame where ~r0 = ~0)

d~v

dt
=

q

m
~v � ~B0 +

q

m
~v � ((~r � r) ~B)

In a case when the direction of ~B is always the same and ~B simply changes magnitude in some direction,
we have (~r � r) ~B k ~B, and therefore ~v � ((~r � r) ~B) ? ~B, and we can therefore predict that the behaviour

produced will be a resultant drift velocity of the particles (here, ~F = q(~v� ((~r �r) ~B)). However, solving for
the exact velocity is somewhat more involved, as the force is not constant (both ~v and ~r change). However,
the resultant drift force is

~vd / 1

q
~B � (rB)

where B = j ~Bj. Therefore, for positive particle in ~B = B(x)k̂ and rB(x) = B0(x)̂i, B0(x) > 0, the particle
will drift in positive ĵ direction.

2.2.2 Curvature Drift

Consider now ~B0 �eld which does not change magnitude, but changes slowly direction with local radius of
curvature R. Let n̂ be the vector normal to �eld lines of ~B0 in the direction into the centre of curvature.
The particle tries to keep its centre of gyration on the �eld line of ~B0 - this creates an e�ective centrifugal
force on the particle

~Fc = �
mv2k
R

n̂

where vk is the speed parallel to ~B0, which is constant. Therefore, we can directly say

~vd =
~F � ~B0

qj ~B0j2
= �

mv2k
qRj ~B0j2

n̂� ~B0 =
mv2k

qRj ~B0j2
~B0 � n̂

Therefore, particle drifts in direction perpendicular to ~B0 and perpendicular to the plane of the circle of
curvature. Therefore, if ~B0 = B0ĵ and n̂ = �î, the particle would drift in positive k̂ direction, given that
q is positive.
We should note that both curvature drift and gradient drift are sign dependent and will lead to creation of
currents in the plasma.

2.2.3 Ring Currents

Ring currents occur in Earth's Magnetosphere. The magnetic �eld lines go from pole to pole and the �eld
gets weaker as we move further away from Earth's surface. Therefore, the gradient of the magnetic �eld
points towards Earth, ~B approximately parallel to earths surface and radius of curvature vector n̂ points
towards the surface. Therefore, both drift velocities due to gradient and curvature currents are in the same
direction, and therefore currents are induced in this part of magnetosphere. The nature of the current is
such that it induces new magnetic �eld that opposes the original �eld ~B, and therefore strong ring currents,
as they are called, can reduce the magnetic �eld of Earth.
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3 Optical Waves in Plasma

Now, lets consider electromagnetic waves incident on the plasma, with frequency high enough that the
motion of the ions can be neglected compared to the motion of electrons, i.e. the frequency of the waves !

! � !ic; ! � !ip

where !ic=ip are ion cyclotron and ion-plasma frequencies.
The electromagnetic waves can be expressed as

~E = Re
�
~E0e

i(~k�vecr�!t)
�

where Re(z) denotes the real part of z and ~E0 is a constant, generally complex. Usually, I will drop real

part and just assume that it is implied. Similarly, for ~B

~B = ~B0e
i(~k�~r�!t)

Since plasma is a conductor, we can assume that we will have some form of Ohm's law

~j = �
~E

where � is generally a tensor. We now need to make this consistent with Maxwell equations. The fourth
Maxwell equation is

r� ~B = �0~j +
1

c2
@ ~E

@t

r� ~B = �0� ~E +
1

c2
(�i!) ~E =

1

c2

�
1

�0
� � i!I

�
~E =

�i!
c2

�
I+

i

!�0
�

�
~E

We usually write � = I+ i
!�0

�, where I is the identity tensor.

Now, consider the e�ect of ~E and ~B on the change of position of the particle. From the 3rd Maxwell
equation

r� ~E = i~k � ~E = �@ ~B

@t
= i! ~B

Hence
j ~Ej � !

j~kj
j ~Bj = cj ~Bj

The Lorentz force on the electrons is then

d~v

dt
=
�e
m

~E � e

m
~v � ~B

����d~vdt
���� � e

m
j ~Ej+ e

m

j~vj
c
j ~Ej

We can see that in a non-relativistic approach, the e�ect from the wave of the ~B �eld on the motion of the
electrons is very small compared to the e�ect from the electric �eld ~E. Therefore, we will usually neglect
this e�ect.
In order to generalize, we could however impose some background �eld ~B0 which is not wavelike and
therefore has an e�ect on the electron motion. We are therefore setting ~B ! ~B + ~B0. Then, the Lorentz
force becomes

d~v

dt
= � e

m
~E � e

m
~v � ~B0

Lets now assume that ~B0 = B0ẑ and that the velocity of the electrons is also wavelike, i.e. ~v = ~v0e
i(~k�~r�!t).

Then
�i!~v = � e

m
~E � e

m
~v � ~B0

~v = � ie

m!
~E � ie

m!
~v � ~B0

Since ~v � ~B0 = (vy;�vx; 0)B0, we have

vz = � ie

m!
Ez
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vy = � ie

m!
Ey +

ie

m!
vxB0

vx = � ie

m!
Ex � ie

m!
vyB0

Substituting from the last equation into the middle one

vy = � ie

m!
Ey +

ieB0

m!

�
� ie

m!
Ex � ieB0

m!
vy

�

vy = � ie

m!
Ey +

e2B0

m2!2
Ex +

e2B2
0

m2!2
vy

Remembering that eB0

m = !ec

vy = � ie

m!
Ey +

!2ec
!2B0

Ex +
!2ec
!2

vy

vy

�
1� !2ce

!2

�
=

!2ec
!2B0

Ex � ie

m!
Ey =

e

m

�
!2ec
!2

m

eB0
Ex � i

!
Ey

�
=

e

m

�
!ec
!2

Ex � i

!
Ey

�
Hence

vy =
e

m

0
@ !ec

!2
�
1� !2ec

!2

�Ex � i

!
�
1� !2ec

!2

�Ey

1
A =

e

m

�
!ec

!2 � !2ec
Ex � i!

!2 � !2ec
Ey

�

Hence

vx =
�ie
m!

Ex � i!ec
!

� e

m

�
!ec

!2 � !2ec
Ex � i!

!2 � !2ec
Ey

�
=

e

m

��i
!

�
1 +

!2ec
!2 � !2ec

�
Ex � !ec

!2 � !2ec
Ey

�

Therefore, we have

vx =
e

m

�
i!

!2ec � !2
Ex +

!ec
!2ec � !2

Ey

�

vy =
e

m

� �!ec
!2ec � !2

Ex +
i!

!2ec � !2
Ey

�

vz =
e

m

��i
!
Ez

�
This can be summarized as

~v =
e

m
�
~E =

e

m

0
B@

i!
!2ec�!2

!ec
!2ec�!2 0

�!ec
!2ec�!2

i!
!2ec�!2 0

0 0 �i
!

1
CA ~E

The current induced by the wave can then be expressed as

~j = �q~v = �ene e
m
�
~E = �e2ne

m
�
~E = ��0!2ep� ~E

where !ep is the electron-plasma frequency !ep =
q

e2ne
m�0

With reference to the Ohm's law, ~j = �
~E

� = ��0!2ep�
Therefore

� = I+
i

!�0
� = I� i!2ep

!
� =

0
BB@

1 +
!2ep

!2ec�!2
�i!2ep !ec!
!2ec�!2 0

i!2ep
!ec
!

!2ec�!2 1 +
!2ep

!2ec�!2 0

0 0 1� !2ep
!2

1
CCA =

0
@ �1 �i�2 0

i�2 �1 0
0 0 �3

1
A

And we now know that r� ~B = �i!
c2 �

~E in terms of ~E.
If we take curl of the third Maxwell equation, we have

r� (r� ~E) = �r�
 
@ ~B

@t

!
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Using the fact that both ~E and ~E are wavelike

r� (r� ~E) = r(r � ~E)�r2 ~E = i~k(i~k � ~E)� (ij~kj)2 ~E = �~k(~k � ~E) + j~kj2 ~E

�r�
 
@ ~B

@t

!
= i!r� ~B = i!

��i!
c2

�
~E

�
=

!2

c2
�
~E

Therefore, we have

�~k(~k � ~E) + j~kj2 ~E =
!2

c2
�
~E

~k(~k � ~E)� j~kj2 ~E +
!2

c2
�
~E = 0 (5)

The electric �eld of an optical EM wave in plasma must obey this equation. If we are searching for linear
waves, we need the equation to be obeyed for any vector ~E that we use as representation for the linear
waves. This will clearly put some restrictions on the values of ~k and ! the wave can have - this equation
will provide us with the dispersion relation. In order to �nd the dispersion relation, we need to rewrite the
above equation in a tensor form. The �rst term in the equation becomes

~k(~k � ~E) =
0
@ kx(kxEx + kyEy + kzEz)

ky(kxEx + kyEy + kzEz)
kz(kxEx + kyEy + kzEz)

1
A =

0
@ k2x kxky kxkz

kxky k2y kykz
kxkz kykz k2z

1
A
0
@ Ex

Ey

Ez

1
A

The second term is

j~kj2 ~E = (k2x + k2y + k2z)
~E =

0
@ k2x + k2y + k2z 0 0

0 k2x + k2y + k2z 0
0 0 k2x + k2y + k2z

1
A
0
@ Ex

Ey

Ez

1
A

We already know the tensor form for the third term, so we can write that

~k(~k � ~E)� j~kj2 ~E +
!2

c2
�
~E =

0
B@

!2

c2 �1 � k2y � k2z kxky � i!
2

c2 �2 kxkz

kxky + i!
2

c2 �2
!2

c2 �1 � k2x � k2z kykz
kxkz kykz

!2

c2 �3 � k2x � k2y

1
CA ~E = 0

We can also rewrite this in terms of refractive index vector

~N =
c

!
~k

as

!2

c2

0
@ �1 �N2

y �N2
z NxNy � i�2 NxNz

NxNy + i�2 �1 �N2
x �N2

z NyNz

NxNz NyNz �3 �N2
x �N2

y

1
A ~E =

!2

c2
M ~E = 0

This equation applies for any ~E if detM = 0, i.e.������
�1 �N2

y �N2
z NxNy � i�2 NxNz

NxNy + i�2 �1 �N2
x �N2

z NyNz

NxNz NyNz �3 �N2
x �N2

y

������ = 0 (6)

This is the required dispersion relation, which will help us predict the types and basic behaviour of optical
waves that propagate through plasma.

3.1 Optical Eigenmodes

More precisely, we might be interested in the polarization of the waves given by the dispersion relation. To
solve this, return to the original equation M ~E = 0. If ~E is the eigenvector of M, we have a vector that can
potentially always satisfy the dispersion relation, if its eigenvalue � satis�es

M ~E = �~E = 0

� = 0

Therefore, we can solve jM� �Ij = 0 to �nd eigenvalues of M, use these eigenvalues to �nd eigenmodes ~E
which can propagate through the system, and solve � = 0 to obtain dispersion relations of the eigenmodes.
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3.2 No External Field

In the case when ~B0 = 0, !ec = 0, and therefore

�2 =
!2ep

!ec
!

!2ec � !2
= 0

�1 = 1 +
!2ep

!2ec � !2
= 1� !2ep

!2
= �3

Also, since ~B0 = 0, there is no pre�ered direction in the plasma, and therefore we should expect the same
result from the dispersion relation. We can therefore choose that the wave propagates, for example, in the
x direction, so that Nx =

ck
! , Ny = Nz = 0. The secular equation becomes

0 = jM� �Ij =
������
�3 � � 0 0
0 �3 �N2

x � � 0
0 0 �3 �N2

x � �

������ = (�3 � �)(�3 �N2
x � �)2

Therefore, we have one eigenvalue �1 = �3 and two degenerate eigenvalues �2 = �3�N2
x . The corresponding

eigenmodes are given by (M� �I)~a = 0. For �10
@ 0 0 0

0 �N2
x 0

0 0 �N2
x

1
A
0
@ ax

ay
az

1
A = 0

which implies that the normalised eigenvector ~a1 will be

~a1 =

0
@ 1

0
0

1
A

As the wave propagates in the x direction, this wave represents longtitudal waves - oscillation is in the
direction of propagation.
To �nd the dispersion relation, we solve �1 = 0

�3 = 1� !2ep
!2

= 0

! = !ep (7)

So, this mode corresponds to oscillations at a single allowed frequency, !ep, therefore this behaviour corre-
sponds to the electron-plasma oscillation. To further illustrate this, we can �nd that while the phase speed
is

vp =
!

k
=

!ep
k

the group speed is

vg =
d!

dk
= 0

so at this wave, there is no real transport of matter.
The other two eigenvectors are given by

0 = (M� �2I)~a2 =

0
@ N2

x 0 0
0 0 0
0 0 0

1
A
0
@ a1

a2
a3

1
A

which is satis�ed when a1 = 0. Therefore, we can �nd two orthonormal eigenvectors

~a2 =

0
@ 0

1
0

1
A ;~a3 =

0
@ 0

0
1

1
A

The wave propagates in the x direction, and the eigenmodes are in y and z directions - this corresponds to
any transverse, linearly polarized wave. The dispersion relation is

�3 �N2
x = 0

10
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1 =
!ep
!2

+
c2k2

!2

!2 = c2k2 + !2ep (8)

These waves are therefore dispersive, although in the limit of large k (small wavelength), !2 ! c2k2, which
is dispersion relation for elastic, i.e. non-dispersive waves.
Generally, the phase speed of these waves is given by

vp =
!

k
=

r
c2 +

!2ep
k2

and the group speed

vg =
d!

dk
=

c2kq
c2k2 + !2ep

=
cq

1 +
!2ep
c2k2

Notice that the phase speed is bigger than c. This, however, does not contradict the special relativity, as
any real transport of information, or matter, can happen only at the group speed, which is smaller than c.
The dispersion relations for the waves in zero external �eld are summarized in Fig. 2

Figure 2: The blue line represents the dispersion curve of transverse waves in zero external �eld. As k
increases for these waves, they start to behave like elastic waves and approach dispersion curve ! = ck.
The black line represents the electron-plasma oscillations.

One peculiar property of these waves is the fact that the product of phase and group speed goes to c2

vpvg = c

r
1 +

!2ep
c2k2

cq
1 +

!ep
c2k2

= c2

If we have a wave incident on the plasma that does not satisfy the dispersion relation, we can have for
example, for low frequency waves

c2k2 = !2 � !2ep < 0

Then, we have k = i

p
!2ep�!2
c

~E = ~E0e
ikxe�i!t = ~E0e

�i!te�x
p
!2ep�!2=c

Thus we have an evanescent wave that exponentially decreases as it enters the plasma, with constant of
decay k, which means that the wave penetrates the medium up to so called skin depth zD

zD =
cq

!2ep � !2

The wave that is prevented from entering the medium is then usually in part absorbed in the evanescent
wave, but also re
ected.

11
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3.2.1 Radio Waves in Earth's Atmosphere

In the Earth's atmosphere, the number of ionized particles rapidly increases in the ionosphere. This increase
means that the concentration of electrons ne here increases, and therefore !ep increases here as well. This
means that wave that had real dispersion relation below ionosphere with !2� (!0ep)

2 > 0 (where !0ep is the
electron-plasma frequency below ionosphere) can now have !2�!2ep < 0 and therefore gets re
ected by the
ionosphere. This enables transmittion of radio waves by bouncing of ionosphere and surface of the Earth,
repeatadly.

3.3 Waves Propagating Parallel to External Field

Consider now a wave that propagates in the same direction as a non-zero �eld ~B0 = B0ẑ. This means that
Nz =

ck
! and Nx = Ny = 0. The secular equation we have to solve is������

�1 �N2
z � � �i�2 0

i�2 �1 �N2
z � � 0

0 0 �3 � �

������ = 0

(�3 � �)[(�1 �N2
z � �)2 � �22] = 0

We therefore again have a mode at �1 = �3 and two other modes at �2 = �1�N2
z ��2 and �3 = �1�N2

z +�2.
The eigenvector for �1 is 0

@ �1 �N2
z � �3 �i�2 0

i�2 �1 �N2
z � �3 0

0 0 0

1
A
0
@ a1

a2
a3

1
A = 0

The equations for the �rst two components a1 and a2 can be rewritten as

Pa1 � iQa2 = 0

iQa1 + Pa2 = 0

where P = �1 �N2
z � �3 and Q = �2 and generally, P 6= Q. Multiplying �rst equation by Q leads to

PQa1 = iQ2a2

Multiplying second equation by �iP leads to

PQa1 = iP 2a2

Equating these two, we recover P 2a2 = Q2a2. For this to generally apply, we need a2 = 0. This directly
leads to a1 = 0 and therefore, we have again

~a1 =

0
@ 0

0
1

1
A

with dispersion relation �3 = � = 0, i.e. ! = !ep. This is exactly the same electron-plasma oscillation mode

we observed when ~B0 = 0. Perhaps this should not be too surprising, as this is a longtitudal mode with
electrons moving parallel to the �eld. The force of this �eld on the electrons is then proportional to ~v� ~B0,
which for ~v k ~B0 goes to zero - the electron plasma oscillation mode is undisturbed by the additional �eld.
For �2 = �1 �N2

z � �2 0
@ �2 �i�2 0

i�2 �2 0
0 0 �3 � �1 +N2

z + �2

1
A
0
@ a1

a2
a3

1
A = 0

This is satis�ed when a3 = 0 and a1 = ia2, i.e. for case

~a2 =
1p
2

0
@ 1
�i
0

1
A

12
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This is somewhat non-standard, as the eigenvector is complex. To give interpretation to this, consider the
form of the wave �eld ~E

~E = E~a2e
i(~k�~r�!t) =

Ep
2

0
BB@

exp
�
i(~k � ~r � !t)

�
exp

��i�2 � exp�i(~k � ~r � !t)
�

0

1
CCA =

Ep
2

0
BB@

exp
�
i(~k � ~r � !t)

�
exp

�
i(~k � ~r � !t� �

2 )
�

0

1
CCA

where I used �i = e�i
�
2 . This eigenvector implies that the eigenmode has a phase shift between the x and

y components of the oscillating �eld of �
2 and that the �elds have the same magnitude in both directions -

the eigenmode is a circularly polarized light. In this case, this is the left-handed circularly polarized light.
The dispersion relation is obtained by �2 = 0

�1 �N2
z � �2 = 0

c2k2

!2
= �1 � �2 = 1 +

!2ep
!2ec � !2

� !2ep
!ec
!

!2ec � !2
= 1 + !2ep

! � !ec
!(!ec � !)(!ec + !)

= 1� !2ep
!(!ec + !)

k =
!

c

s
1� !2ep

!(!ec + !)
(9)

Before we discuss the properties of this wave, lets determine the other eigenmode �rst, as we will discover
that they are related. For �3 = �1 �N2

z + �20
@ ��2 �i�2 0

i�2 ��2 0
0 0 �3 � �1 +N2

z � �2

1
A
0
@ a1

a2
a3

1
A = 0

Again, we have a3 = 0, but this time ia1 = a2, and therefore

~a3 =
1p
2

0
@ 1

i
0

1
A

which corresponds to right-hand circularly polarized light. The dispersion relation is

�3 = �1 �N2
z + �2 = 0

c2k2

!2
= 1 +

!2ep
!2ec � !2

+
!2ep

!ec
!

!2ec � !2
= 1 + !2ep

!ec + !

!(!ec � !)(!ec + !)
= 1 +

!2ep
!(!ec � !)

k =
!

c

s
1 +

!2ep
!(!ec � !)

(10)

The dispersion relations for these modes are summarized in Fig. 3.
Several things can be determined about these two wave modes. We will start by cut-o� frequencies -
frequencies when the k starts to become complex rather than real. For left-handed waves

k =
!

c

s
1� !2ep

!(!ec + !)
= 0

1� !2ep
!(!ec + !)

= 0

!2 + !ec! � !2ep = 0

! =
�!ec
2

+

q
!2ec + 4!2ep

2
=

1

2

�q
!2ec + 4!2ep � !ec

�
Where I chose the positive root. We call this frequency !1.

13
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Figure 3: The red line represents the left-handed polarized waves, the green line represents the right-handed
polarized waves. We can see that left-handed waves only have one branch, while right-handed waves have
an extra, so called whistler branch. We also still observe electron-plasma oscillations (black line). Notice
that the axes for ! and k are swapped.

For right-handed waves, cut-o� frequency is

k =
!

c

s
1 +

!2ep
!(!ec � !)

= 0

1 +
!2ep

!(!ec � !)
= 0

!2 � !ec! � !2ep = 0

! =
!ec
2

+

q
!2ec + 4!2ep

2
=

1

2

�q
!2ec + 4!2ep + !ec

�
where I again chose the positive root. This frequency is called !2. We should note that !2 > !1. But,
importantly, if we have ! < !ec for right-handed waves, we have again a valid dispersion relation. This
means that right-handed waves have a second branch of the dispersion relation from ! = 0 to ! = !ec.
These waves are called the whistler waves. We can see that at ! = 0

lim
!!0

k = lim
!!0

!

c

s
1 +

!2ep
!(!ec � !)

= lim
!!0

!

c

s
!2ep
!!ec

= 0

Other interesting property is that for right-handed waves, we can hit a resonance when ! = !ec, as then
k !1. This happens because the incident right-hand circularly polarized waves have the same frequency
and orientation as gyration of the electrons in the plasma due to the external �eld. Therefore, the incident
wave moves the electrons practically without any oposition - leads to resonance. This speci�c resonance
is called electron cyclotron resonance. At this resonance, the incident wave tends to get absorbed by the
plasma, rather then re
ected.
We should also notice that for low frequencies, only the right-handed waves can propagate through the
plasma. This is because the left-handed waves get diminished by the gyration of the electrons, which is in
opposite direction. At very low frequencies, the whistler branch of the right-handed waves behaves as

k =
!

c

s
1 +

!2ep
!(!ec � !)

� !

c

!epp
!!ec

=
1

c

p
!

!epp
!ec

! =
!ec
!2ep

c2k2

Therefore, we have dispersive waves with ! / k2, and therefore the group speed is vg / k / ��1. Therefore,
longer wavelengths travel slower with these waves - this produces a characteristic whistle pro�le when a
point signal propagates via this wave - hence the name whistler waves.
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3.3.1 Faraday Rotation

Consider now a linearly polarized light propagating along the direction of the external magnetic �eld is
incident on the plasma. Suppose that frequency ! > !1, hence the wave satis�es dispersion relation. How
does this wave propagate through the plasma, since it is not the eigenmode of the dispersion equation?
We can express linearly polarized light as superposition of left-handed and right-handed circularly polarised
light as

~Elin = ~Elh + ~Erh = Elh

0
@ 1
�i
0

1
A ei(k1z�!t) + Erh

0
@ 1

i
0

1
A ei(k2z�!t) =

0
@ Erhe

ik2z + Elhe
ik1z

iErhe
ik2z � iElhe

ik1z

0

1
A e�i!t

where k1 = !
c

q
1� !2ep

!(!ec+!)
and k2 = !

c

q
1 +

!2ep
!(!ec�!) . We can therefore see that as the linear light

propagates throught the material, the angle of the polarisation changes. For the case when the light is
initially perfectly linearly polarized, Elh = Erh. At z = 0, ~Elin is

~Elin = Erh

0
@ 1 + 1

i� i
0

1
A e�i!t = 2Erhe

�i!t

0
@ 1

0
0

1
A

Therefore, initially, the light is polarized along the x direction. The angle to the x axis after the light has
travelled distance z in the medium is therefore given as �� = tan�1(Ey=Ex). Here

Ey

Ex
= i

eik2z � eik1z

eik2z + eik1z
= i

eik2z � eik1z

eik2z + eik1z
� e�i

(k1+k2)
2 z

e�i
(k1+k2)

2 z
= i

ei
(k2�k1)

2 z � e�i
(k2�k1)

2 z

ei
(k2�k1)

2 z + e�i
(k2�k1)

2 z
= tan

�
k2 � k1

2
z

�

�� =
k2 � k1

2
z (11)

For high frequencies

k2 � k1 =
!

c

0
@
s
1 +

!2ep
!(!ec � !)

�
s
1� !2ep

!(!ec + !)

1
A � !

c

 
1 +

!2ep
2!(!ec � !)

� 1 +
!2ep

2!(!ec + !)

!
=

=
!2ep
2c

�
1

!ec � !
+

1

!ec + !

�
=

!2ep
2c

0
@!ec + ! + !ec � !

!2
�
!2ec
!2 � 1

�
1
A � �!2ep!ec

c!2

Hence

�� = �!2ep!ec

2c!2
z

Using !2ep =
e2ne
�0m

and !ec =
eB0

m

�� = � e3neB0

2c�0m2!2
z

Or, in in�nitesimally

d�

dz
= � e3

2c�0m2!2
neB0 (12)

Therefore, we can determine the concentration of plasma or external magnetic �eld by examining the
polarization of light. If the light passes through part of plasma where ne or B0 is not uniform, we then
have

�� =

�
L

d�

dz
dz =

�e3
2c�0m2!2

�
L

neB0dz

where L is the path the light travels.
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3.4 Waves Propagating Perpendicular to External Field

In this case, assume Nz = 0 and choose for example Nx =
ck
! and Ny = 0 (the choice is arbitrary and does

not in
uence the result). The secular equation becomes������
�1 � � �i�2 0
i�2 �1 �N2

x � � 0
0 0 �3 �N2

x � �

������ = 0

(�3 �N2
x � �)

�
(�1 � �)(�1 �N2

x � �)� �22
�
= 0

First solution is when �1 = �3 �N2
x . Then0

@ �1 +N2
x � �3 �i�2 0

i�2 �1 � �3 0
0 0 0

1
A
0
@ a1

a2
a3

1
A = 0

This can generally apply only when a1 = a2 = 0 and thus

~a1 =

0
@ 0

0
1

1
A

These waves are polarized in the same direction as external �eld B0 and travel transversly to this polariza-
tion. The dispersion relation is

0 = �1 = �3 �N2
x = 1� !2ep

!2
� c2k2

!2

!2 = c2k2 + !2ep (13)

This is the same behaviour as in the zero �eld waves. These waves are therefore called the ordinary waves.
Again, the oscillations of ~E are parallel to ~B0, therefore the motion of electrons ~v k ~B0, so it makes sense
that the presence of the external �eld does not in
uence this motion.
For the other two eigenvalues, we have

(�1 � �)(�1 �N2
x � �)� �22 = 0

�2 � ��1 �N2
x + �1

�
�+ �1(�1 �N2

x)� �22 = 0

� =
1

2

�
2�1 �N2

x �
q
(2�1 �N2

x)
2 + 4(�22 � �21 + �1N2

x)

�
=

1

2

�
2�1 �N2

x �
q
N4
x + 4�22

�
Therefore 0

BBB@
N2
x

2 �
q

N4
x

4 + �22 �i�2 0

i�2 �N2
x

2 �
q

N4
x

4 + �22 0

0 0 �3 � �1 � N2
x

2 �
q

N4
x

2 + �22

1
CCCA
0
@ a1

a2
a3

1
A = 0

Right away we see that a3 = 0. However, requirements on a1 and a2 are not so obvious. The equations are 
N2
x

2
�
r

N4
x

4
+ �22

!
a1 � i�2a2 = 0

i�2a1 �
 
N2
x

2
�
r

N4
x

4
+ �22

!
a2 = 0

Multiplying second equation by i�2

��22a1 �
 
N2
x

2
�
r

N4
x

4
+ �22

!
(i�2a2) = 0
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Substituting in for (i�2a2) from the �rst equation

��22a1 �
 
N2
x

2
�
r

N4
x

4
+ �22

! 
N2
x

2
�
r

N4
x

4
+ �22

!
a1 = 0

�22a1 +

�
N4
x

4
� N4

x

4
� �22

�
a1 = 0

But, we can see that this equation applies for any value of a1. Therefore, there will be waves polarized
somehow in the xy plane. But, before we explore these further, we will solve the dispersion relation, which
will help us simplify the expression for the eigenmodes.
The dispersion relation is best obtained by setting � = 0 in (�1 � �)(�1 �N2

x � �)� �22 = 0, which leads to

�21 � �1N
2
x = �22

N2
x =

�21 � �22
�1

=
1 + 2

!2ep
!2ec�!2 +

!4ep
(!2ec�!2)2 �

!2ec
!2 �

!4ep
(!2ec�!2)2

1 +
!2ep

!2ec�!2

This equation is rather complicated, so I present only the result. It follows that

k =
1

c

s
(!2 � !21)(!

2 � !22)

!2 � !2H
(14)

where !1 and !2 have the same meanings as before and !H =
q
!2ep + !2ec is called the upper hybrid

frequency. We can again see that there will be a hybrid resonance at ! = !H and that !1 and !2 will play
the roles of cut-o� frequencies. At the resonance, the wave is again absorbed rather than re
ected.
For the eigenmodes, it is su�cient to �nd out that

N2
x

2
=

�1
2
� �22

2�1

N4
x

4
=

�21
4
� �22

2
+

�42
4�21

N4
x

4
+ �22 =

�21
4
+

�22
2
+

�42
4�21

=

�
�1
2
+

�22
2�1

�2
Hence, we have two modes with the same dispersion relation. One mode is given by (using only part of the
matrix that mixes components in xy plane, as a3 = 0) 

�1
2 �

�22
2�1
� �1

2 �
�22
2�1

�i�2
i�2 � �1

2 +
�22
2�1
� �1

2 � �22
2�1

!�
a1
a2

�
=

 
� �22

�1
�i�2

i�2 ��1

!�
a1
a2

�
= 0

which is satis�ed when a2 = i �2�1 a1. So, we have

~a1 =

0
@ 1

i �2�1
0

1
A

which corresponds to an elliptically polarized wave, with the exact ratio of Ex=Ey dependant on the
frequency of the wave. This mode is right-hand elliptically polarized.
Similarly, for the other eigenmode 

�1
2 �

�22
2�1

+ �1
2 +

�22
2�1

�i�2
i�2 � �1

2 +
�22
2�1

+ �1
2 +

�22
2�1

!�
a1
a2

�
=

 
�1 �i�2
i�2

�22
�1

!�
a1
a2

�
= 0

which is satis�ed when a2 = �i �1�2 a1.

~a1 =

0
@ 1
�i �1�2
0

1
A

This mode is left-hand elliptically polarized.
We also see that both modes have oscillations in x direction and y direction - extraordinary waves are mix
of transverse and longtitudal waves.
The overview of the dispersion relations is presented in Fig. 4
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Figure 4: The dispersion relations in waves travelling perpendicularly to the external �eld. The blue line
represents ordinary waves, the green line represents extraordinary waves.

3.4.1 Heating Plasma

We can remotly heat the plasma by radiating it at resonance frequencies. If we apply an EM wave parallel
to the direction of the external ~B0 �eld, we can use the RH circularly polarized wave to hit the electron
cyclotron resonance at ! = !ec. If we are providing radiation perpendicular to the external �eld ~B0, we

can hit the upper hybrid resonance ! =
q
!2ep + !2ec

4 Plasma Kinetics

Here, we will brie
y discuss some very general phenomena that apply to plasma that might not be ideal or
not in perfect equilibrium.

4.1 Temperature E�ects on Plasma

When there is a non-zero temperature present in the plasma, electrons tend to move around on their own.
This creates an electronic pressure, which makes modi�cations to some of the observed waves in plasma.
Generally, when there is a random 
uctuation of electron movement, there is a gradient of the concentration
of electrons established, and therefore a force ~F / �rne is created. Modelling the electrons as an ideal
gas, we can derive that

p =
NkBT

V
= nekBT

where p is the pressure of the electrons and T their temperature. And thus

~F / �r p

kBT

Consider now that the pressure gradient exists on the scale of the waves � = 2�
k . Therefore

~F � 1

2�kBT
~kp

Which leads to addition of e�ective sound waves into the system. These are longtitudal waves in the electron
concentration, occuring without any external �eld. This means that they will modify the electron-plasma
oscillation mode. This mode now becomes

!2 = !2 + c2sk
2

where cs is the speed of sound in the electron gas

cs =

r

ekBT

m

18



PX392 - Plasma Electrodynamics Revision Guide

where 
e is the Poisson constant for the electron gas. This means that there is some dispersion even for
the electron plasma oscillations, although for small temperatures, cs is very small and therefore the e�ect
is also very weak.

4.2 Vlasov Equation

If we want to describe certain system with most detail, we need a distribution function f associated with
the system. This distribution function is usually the function of position ~r, velocity ~v and time t and
describes a probability that some part of the system is at position ~r with velocity ~v at time t. For a system
of many particles, f can describe the number of particles that are at position ~r and have speed ~v at time
t. We could then normalize f to correspond to probability that the particles are in such state by de�ning
normalized distribution function

F (~r;~v; t) =
1

n0
f(~r;~v; t)

where n0 is the concentration of the particles at equilibrium.
We can retrieve information from the distribution function using di�erent integral operations, such as

N(t) =

�
space

�
velocity

f(~r;~v; t)d3vd3r

where N is the total number of particles in the system.
Very useful constraint on f can be made by requiring that the number of these particles is conserved, i.e.

dN

dt
= 0

Since the integral in de�nition of N does not run over time, we can say that

0 =
d

dt

�
space

�
velocity

f(~r;~v; t)d3vd3r =

�
space

�
velocity

df

dt
d3vd3r

Therefore, we have the Boltzmann equation
df

dt
= 0

Expanding the total di�erential, we have

df

dt
=

@f

@t
+

dri
dt

@f

@ri
+

dvi
dt

@f

@vi
= 0

where Einstain summation convention is used and we sum over all spatial indices. We could also de�ne
that

@f

@~r
=

�
@f

@x
;
@f

@y
;
@f

@z

�
and then rewrite the Boltzmann equation as

@f

@t
+ ~v � @f

@~r
+

~F

m
� @f
@~v

= 0 (15)

where I used ~v = d~r
dt and Newton's second law ~F = m~a = md~v

dt .
If we now assume that our system of particles is plasma which is collisionless, the only force acting on the
particles is the Lorentz force ~F = q( ~E + ~v � ~B). Then, for electrons with q = �e

@f

@t
+ ~v � @f

@~r
� e

m
( ~E + ~v � ~B) � @f

@~v
= 0 (16)

This equation is called the Vlasov equation and is the basis of kinetic description of plasma. However,
calculations with it are very complicated, and therefore we will discuss its use only very brie
y.
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4.3 Waves in Vlasov Equation

In a perfect equilibrium state with no external �elds, we expect the system to be uniform and stationary,
i.e.

f = f0(~v)

Consider now a small wave-like perturbation to the system, which adds a perturbation distribution function
f1(~r;~v; t) to the total distribution function and similar perturbations to all other variables. The Vlasov
equation then is

0 =
@(f0 + f1)

@t
+ ~v � @(f0 + f1)

@~r
� e

m
~E1 � @(f0 + f1)

@~v
= 0

where I used the fact that for wave-like perturbations, e�ect of ~B is much smaller than e�ect of ~E. Using
the de�nition of f0 and retaining only the expressions up to the �rst order in perturbation, we have

0 =
@f1
@t

+ ~v � @f1
@~r

� e

m
~E1 � @f0

@~v

Using the wave-like nature of f1,
@f1
@t = �i!f1, @f1

@~r = i~kf1 and therefore, the Vlasov equation becomes

0 = �i!f1 + ~v � i~kf1 � e

m
~E1 � @f0

@~v

We now however have an equation dependent on the �eld ~E1, which is created by the perturbation and we
would like to determine from f1. To get rid of this dependence, we will use the 1st Maxwell equation

r � ~E =
�q
�0

= �ene
�0

where ne is the excess concentration of electrons. For our wavelike perturbation, this becomes

i~k � ~E1 = �ene
�0

Here, however, we have only introduced another unknown - ne, which is also perturbed. But, we can express
the concentration of electrons ne in integral form as

ne =

�
velocity

f1d
3v

To make the model simpler, consider now a 1D case. The Vlasov equation is

0 = �i!f1 + ivxkxf1 � e

m
E1x

@f0
@vx

Hence

f1 =
e

m
E1x

@f0
@vx

� 1

ivxkx � i!

1st Maxwell equation is

ikxE1x = � e

�0

�
velocity

f1d
3v

Hence

E1x = i
e

�0kx

�
velocity

f1d
3v

Thus, by combining these two equations

E1x = i
e

�0kx

�
velocity

ie

m(! � vxkx)
E1x

@f0
@vx

d3v

As only f0 depends on the velocity v, we can factor out most of the terms inside the integral.

E1x = � e2

�0kxm
E1x

�
velocity

@f0
@vx

! � vxkx
d3v
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Hence, we can divide by E1x. Also, as we are in 1D model, we know that f0(~v) = �(vy)�(vz)f0x(vx), so we
have

1 = � e2

�0kxm

� 1

�1

@f0x
@vx

! � vxkx
dvx (17)

This equation sets up a condition for the relation between ! and kx - this is the dispersion relation in terms
of distribution function f . If we change to normalized distribution function F = f0x

n0

1 = � e2n0
�0kxm

� 1

�1

@f0x=n0
@vx

! � vxkx
dvx = �

!2ep
kx

� 1

�1

@F
@vx

! � vxkx

We can integrate by parts

1 = �!2ep
kx

 �
F

! � kxvx

�1
�1

�
� 1

�1

kxF

(! � kxvx)2
dvx

!

For a bounded velocity pro�le, f0x(vx = �1) = 0, and therefore we have

1 = !2ep

� 1

�1

F

(kxvx � !)2
dvx (18)

It can be shown that for a certain sensible choice of F , we can then obtain dispersion relation as

1� !2ep
!2

� c2sk
2
x

!2
� i�

!2ep
k2x

@F

@vx

���
vx=

!
kx

= 0

We can see that there are contributions from the electron-plasma oscillations, sound waves and some
additional contribution which makes ! generally complex. This gives rise to phenomena such as Landau
damping and bump-on-tail instability.
We can see that the imaginary part of ! will be proportional to @F

@vx
. This means that any wave-like quantity

(for example the electric �eld) will follow

E1x / e�i(i Im(!)t) = eIm(!)t / e
@F
@vx

t

Therefore, if the distribution function is steadily decreasing with vx, as is the case for example for Boltzmann
distribution F , any wavelike perturbation will tend to decay away with characteristic time

tD =
1

Im(!)

But, if at some point there is a bump in the distribution function, then for some vx, the derivative is positive,
and therefore we have exponential growth of the wave-like perturbation. This is called the bump-on-tail
instability.

4.3.1 Origin of Imaginary Part

Consider integrating (18) as a contour integral, assuming that closing the contour by a half-circle through
the upper half plane does not change the integral.
Then

� 1

�1

F

(kxvx � !)
dvx =

1

kx

�
C

F

(z � !)2
dz

where z = kxvx. This contour goes through one singularity that lies at z = !. This is a pole of second
order (assuming that F is bounded along real line), therefore the residue of the integrand at this point is

Res

�
F

(z � !)2
; z = !

�
=

@F

@z

���
z=!

Hence the value of the integral is
�
C

F

(z � !)2
dz =

1

2
� 2�i

@F

@z

���
z=!

= i�
@vx
@z

@F

@vx

���
vx=

!
k

=
i�

kx

@F

@vx

���
vx=

!
k
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where the factor of one half is due to the fact that the function goes through the pole. Thus

� 1

�1

F

(kxvx � !)
dvx = i�

1

k2x

@F

@vx

���
vx=

!
k

which is exactly the expression we see in the correct form, but with missing real parts. These are probably
missing because F is not fully analytic function and the integral of the remainder of F that makes it analytic
produces the real parts.

5 Magneto-Hydro Dynamics

Magneto-Hydro dynamics is a discipline studying behaviour of plasma on big scales and on timescales long
enough that any motion of electrons could reach equilibrium. Generally, we could describe it in the Vlasov
distribution function formalism, but this is very complicated, so we will rather use formalism of classical

uid dynamics.
In order for this to be appropriate, we assume mainly 3 things

1. Characteristic time of investigated processes is much larger than the time of electron motion processes
(e.g. 2�

!ep
, 2�
!ec

)

2. Characteristic spatial scale of the problem is much larger than the scale of electron processes (e.g.
radius of gyration)

3. Bulk velocities of the plasma are non-relativistic

Because we are at such long timescales, we can approximate plasma as a very good conductor in sense that
any imbalance in charge density will tend to be negated by electron 
ow almost immediately. Therefore,
the internal EM �elds will be dominated by the magnetic ~B �eld.
As a quick illustration, consider a that a �eld ~E0 is created in the rest frame of the plasma. By Ohm's law

~j = g ~E0

where ~j is the current density and g is the conductivity - some very large number. Hence, any �eld in the
rest frame of the plasma is

~E0 =
1

f
~j � 0

This is especially important if we switch to some other frame of reference, where we observe �elds ~E and
~B. The non-relativistic Lorentz transformations lead to

~E0 = ~E + ~v � ~B

which implies

~E � �~v � ~B (19)

Therefore, we can describe the behaviour of plasma at these scales using only the magnetic �eld ~B.

5.1 Equations of Magneto-Hydro Dynamics

Now, lets start building the di�erential equations needed to describe the plasma. Lets start with the
classical 
uid equations. There are two equations in play.First one is the continuity equation, which is
straightforward

@�

@t
+r � (�~v) = 0 (20)

where � is the mass density and ~v is the speed of the plasma 
ow. Second equation is the Navier-Stokes'
equation. In our case, we will suppose that the plasma is collision less and hence inviscid, which will
transform the equation into Euler's equation, which states

�

�
@

@t
+ ~v � r

�
~v = ~�
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where ~� is the force density in the 
uid. There are two main forces acting on the plasma - the force due to
pressure gradient and the Lorentz force due to �eld ~B. Therefore, we can write

~� = �rp+ q~v � ~B

V
= �rp+~j � ~B

where p is the pressure and V is some volume. Therefore

�

�
@

@t
+ ~v � r

�
~v = �rp+~j � ~B (21)

Finally, we need a way how to relate the pressure and the mass density of the processes. Usually, this is
done via some equation of state. In our case, this can be an equation of ideal gas

p =
2kB
mi

�T

where mi is the mass of the ion (which dominates the mass of the particles) and the factor of 2 is present
because pressure is due to both ions and electrons.
But, more generally, for adiabatic processes in the plasma (
owing without external heating), we can write

d

dt

�
p

�


�
= 0 (22)

Therefore, we have our 
uid equations. Now, we need to explore Maxwell equations. Again, the �rst
Maxwell equation is not of interest, as any excess charge density �q will be quickly negated by electron

ows. Second Maxwell equation is sometimes useful, but as we will see, not always neccessary. Third
Maxwell equation is very interesting, as it describes how the magnetic �eld is induced in the plasma. Using
~E = �~v � ~B, we have

r� ~E = �r� (~v � ~B) = �@ ~B

@t

@ ~B

@t
= r� (~v � ~B) (23)

Fourth Maxwell equation again has a term

1

c2
@ ~E

@t
= � 1

c2
@(~v � ~B)

@t

But, since time scales are relatively long and j~vj � c, we can neglect this term. The terms that are left are

r� ~B � �0~j

Now, we have all the tools needed. If we substitute this last result into the Euler's equation (21), we have
a set of two scalar and two vector equations, with two scalar and two vector unknowns, which is solvable.
The set is

@�

@t
+r � (�~v) = 0 (24)

�

�
@~v

@t
+ (~v � r)~v

�
= �rp+ 1

�0
(r� ~B)� ~B (25)

d

dt

�
p

�


�
= 0 (26)

@ ~B

@t
= r� (~v � ~B) (27)

These equations form a closed set. Therefore, all the other equations, such as the state equation, fourth
Maxwell equation or Ohm's law can be viewed as only constitutive relations - useful for calculating variables
other than the ones used in equations above, which are p, � (scalars), ~B and ~v (vectors).
Clearly, solving these equations is very hard, as the equations are generally non-linear. We can however do
several simpli�cations.
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5.2 Static Equilibrium

Consider a motionless plasma in static equilibrium. This means that any time derivatives, both partial and
total, equate to zero, and the velocity of the plasma is zero. This means that (24),(26) and (27) all become
identically zero. The only equation left is therefore the Euler's equation (25), which now has form

rp = 1

�0
(r� ~B)� ~B

Using identity
r( ~B � ~B) = 2( ~B � r) ~B + 2 ~B � (r� ~B)

we have

(r� ~B)� ~B = ( ~B � r) ~B � 1

2
r( ~B � ~B)

and therefore

rp = � 1

2�0
r(j ~Bj2) + ( ~B � r) ~B

r
 
p+

j ~Bj2
2�0

!
= ( ~B � r) ~B (28)

This enables us to de�ne two speci�c variables - the magnetic pressure pm = j ~Bj2
2�0

and magnetic tension

~TB = ( ~B � r) ~B. These both act e�ectively as extra pressure or tension on the plasma, and their estimates
are a good way how to predict qualitative behaviour of plasma.

5.2.1 Plasma Jet

Suppose we have a cylindrical stream of plasma which carries current ~j. The magnetic �eld induced is
cylindrical and decreases as we move away from the cylinder. This means that the gradient of the magnetic
�eld is directed inwards, and so is the magnetic tension on the plasma. Therefore, the magnetic tension of
the plasma can balance the thermal pressure of the plasma and prevent purely radial di�usion of the jet.
The jet is however not stable to other deformations, as we will see later.

5.2.2 Plasma �

Plasma � is a dimensionless parameter which characterizes whether the thermal or magnetic terms dominate
the behaviour of the plasma. We can estimate it by comparing terms in static Euler equation

rp = 1

�0
(r ~B)� ~B

For a spatial scale �, this becomes
p

�
� B2

�0�

p�0
B2

= 1

Therefore we de�ne

� =
p�0
B2

(29)

with � � 1 implying that magnetic e�ects dominate, while � � 1 implying that thermal e�ects dominate.

5.2.3 Sunspots

Sunspots are places on the Sun where the magnetic �eld emerges from the surface. The �eld emerges
radially from the surface and does not change much radially. This means that

( ~B � r) ~B = (Br
@

@r
) ~B � 0
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so the magnetic tension is zero. The static equation for the plasma then becomes

r
�
p+

B2

2�0

�
= const:

Labeling pE the pressure outside the sunspot, p0 the pressure inside the sunspot and B0 the magnetic �eld
inside the sunspot (assuming that outside the magnetic �eld is zero), we have

pE = p0 +
B2
0

2�0

This means that the pressure at the sunspot is lower than in its surroundings, and the sunspot is supported
by the magnetic pressure. Alternatively, we can use the state equation to write (assuming that the density
� is somewhat similar, which is a reasonable assumption)

2
kB
mi

�T0 = 2
kB
mi

�TE � B2
0

2�0

where T0 is the temperature inside the sunspot and TE temperature outside. So

T0 = TE � miB
2
0

4�0kB�

This means that the temperature in the sunspot is lower than outside - hence why it appears black.

5.3 Freezing-in of the Magnetic Field

The movement of plasma induces currents in the plasma, causing generation of magnetic �eld. A curious
result of this is that the �eldlines of ~B appear to always follow the plasma 
ow - they are e�ectively frozen
in the plasma. Microscopically, this can be explained by the fact that the particles always follow the �eld
lines via gyration - they always 
ow along the �eldlines of ~B. In fact, we cannot really distinguish what is
the cause and e�ect - whether the particles are stuck following the �eldlines or the �eldlines are frozen in
the plasma.
To illustrate this, consider a ~B = B0ĵ �eld and velocity �eld ~v = �yî - velocity in x direction steadily
increasing as y increases. The induction equation then states

@ ~B

@t
= r� (�yB0k̂) = �B0î

This means that ~B is increasing in the x direction - same direction as the speed ~v is increasing in. We
should note that this is only very crude illustration.

5.4 MHD Waves

In order to discover which waves can exist in the plasma on these scales, we need to linearize the MHD
equations. Lets then suppose we have some equilibrium density �0, pressure p0 and magnetic �eld ~B0,
all of which are static and uniform. Furthermore, the equilibrium velocity ~v0 = 0. Then, we allow for
some small wave-like perturbations to all these variables, i.e. ~B = ~B0 + ~B1, � = �0 + �1, p = p0 + p1 and
~v = ~v1. Assume that the wave propagates in the z direction, and that the equilibrium ~B0 �eld is at an
angle � to this direction. Without any loss of generality, we can chose that ~B0 lies in the xz plane, so that
~B0 = (B0 sin �; 0; B0 cos �). We substitute this into our MHD equations and retain only terms that are up
to the �rst order in perturbative terms.
The continuity equation becomes

@(�0 + �1)

@t
+r � ((�0 + �1)(~v1)) = 0

As �0 is static and uniform, we have
@�1
@t

+ �0r � ~v1 = 0

where I neglected the second order term �1~v1. Applying the wave-like nature of �1 and ~v1, the equation
becomes

�!�1 + �0kv1z = 0 (30)
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The adiabatic equation becomes
d

dt

�
p0 + p1

(�0 + �1)


�
= 0

dp1
dt (�0 + �1)


 � (p0 + p1)
d(�0+�1)




dt

(�0 + �1)2

= 0

This can only apply if the numerator is equal to zero. Using the wave nature of p1

�i!p1(�0 + �1)

 � (p0 + p1)
(�0 + �1)


�1 d�1
dt

= 0

Binomially expanding the density terms up to �rst order in �1
�0

and using wave nature of �1

�i!p1�
0
�
1 + 


�1
�0

�
� (p0 + p1)
�


�1
0

�
1 + (
 � 1)

�1
�0

�
(�i!�1) = 0

Retaining only the terms up to �rst perturbation order

�i!p1�
0 � p0
�

�1
0 (�i!�1) = 0

!p1 � !
p0
�1
�0

= 0 (31)

Similarly, we can modify the Euler's equation

(�0 + �1)

�
@(~v0 + ~v1)

@t
+ ((~v0 + ~v1) � r)(~v0 + ~v1)

�
= �r(p0 + p1) +

1

�0
(r� ( ~B0 + ~B1))� ( ~B0 + ~B1)

(�0 + �1)

�
@~v1
@t

+ (~v0 � r)~v1
�
= �rp1 + 1

�0
(i~k � ~B1)� ~B0

�0(�i!)~v1 + �0(~v0 � (i~k))~v1 = �i~kp1 + 1

�0
(i(�kB1y )̂i+ i(kB1x)ĵ)� (B0(sin �î+ cos �k̂))

As ~v0 = 0

��0!~v1 = �~kp1 + 1

�0
B0

�
�kB1y cos �î� k̂ + kB1x sin �ĵ � î+ kB1x cos �ĵ � k̂

�

��0!~v1 + kk̂p1 � 1

�0
B0

�
kB1x cos �î+ kB1y cos �ĵ � kB1x sin �k̂

�
= 0

Hence we have three component equations. In x

��0!v1x � 1

�0
kB0B1x cos � = 0 (32)

In y

��0!v1y � 1

�0
kB0B1y cos � = 0 (33)

In z

��0!v1z + kp1 +
1

�0
kB0B1x sin � = 0 (34)

The last equation left to linearize is the induction equation. This is

@( ~B0 + ~B1)

@t
= r� ((~v0 + ~v1)� ( ~B0 + ~B1))

�i! ~B1 = r� (~v1 � ~B0)

Using a vector calculus identity

�i! ~B1 = (r � ~B0)~v1 � (r � ~v1) ~B0 + ( ~B0 � r)~v1 � (~v1 � r) ~B0
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�i! ~B1 = i( ~B0 � ~k)~v1 � i(~k � ~v1) ~B0

�! ~B1 �B0 cos �k~v1 + kv1z ~B0 = 0

We therefore have again three component equations. In x

�!B1x �B0 cos �kv1x + kv1zB0 sin � = 0 (35)

In y

�!B1y �B0 cos �kv1y = 0 (36)

In z

�!B1z = 0 (37)

Therefore, we have 8 linearized equations (30)-(37). These together form a dispersion relation relating to a

8-component vector of perturbations - (p1; �1; ~B1; ~v1). Generally, we would have to solve for an 8x8 matrix
eigenvectors, but we can simplify the problem by noticing that equations (33) and (36) form a closed set
for B1y and v1y. Furthermore, we can also notice that (37) only applies for arbitrary B1z when ! = 0 - this
means that only a translational mode (no oscillations) is possible for the waves in B1z - we can disregard
it as well.
Therefore, we are left with 2 separate dispersion relations, one with 2x2 matrix and other with 5x5 matrix.

5.5 Alfv�en Waves

The 2x2 matrix dispersion represents the Alfv�en waves in plasmas. The dispersion relation is�
�0!

1
�0
kB0 cos �

kB0 cos � !

��
v1y
B1y

�
= 0

This is a bit problematic equation as the di�erent components of the vector have di�erent dimensions. We
can correct this by setting the vector to (

p
�0v1y;

B1yp
�0
), which leads to

 p
�0!

1p
�0
kB0 cos �q

1
�0
kB0 cos �

p
�0!

! p
�0v1y
B1yp
�0

!
= 0

Now, we have the vector component dimensions the same, but the dimensionality of di�erent matrix rows
is again di�erent. This can be corrected by multiplying the second row by factor 1p

�
0

and �rst row by

factor 1p
�
0

. Then, we have

 
! 1p

�0�0
kB0 cos �

1p
�0�0

kB0 cos � !

! p
�0v1y
B1yp
�0

!
= 0

Solving the secular equation ����� ! � � 1p
�0�0

kB0 cos �
1p
�0�0

kB0 cos � ! � �

����� = 0

(! � �)2 =
k2B2

0 cos
2 �

�0�0

� = ! � 1p
�0�0

kB0 cos �

Therefore the eigenmodes are given by 
� 1p

�0�0
kB0 cos �

1p
�0�0

kB0 cos �
1p
�0�0

kB0 cos � � 1p
�0�0

kB0 cos �

!� p
�0v1y
1p
�0
B1y

�
= 0

which is satsi�ed by
1p
�0

B1y = �p�0v1y
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which means that the eigenvectors are

~a1=2 =
1p
2

�
1
�1

�
which means that the velocity v1y either oscillates together with the oscillations in B1y or in exactly opposite
direction. Since the wave propagates in the z direction, Alfv�en waves are transverse waves. Since there are
no oscillations in � or p, the waves are also incompressive. The dispersion relation is set by � = 0 and is

!2 =
k2B2

0 cos
2 �

�0�0
(38)

Again, as B is frozen in plasma, the oscillations in v and B in the same direction make sense. The oscillations
in opposite directions than probably represent the solution for opposite charge of the ions.
The physical reason behind formation of the Alfv�en waves is again the magnetic tension force, which tries
to restore any gradients in ~B back towards ~B0.
The phase speed of Alfv�en waves is

vp =
!

k
=

B0 cos �p
�0�0

Usually, we de�ne cA = B0p
�0�0

and thus vp = cA cos �.

Alfv�en waves are ellastic and non-dispersive for a �xed direction of the propagation/�eld. However, there
is one particularity of the Alfv�en waves - although the phase velocity is in the direction of z, the group
velocity for Alfv�en waves is always in the direction of ~B0 - hence these two velocities do not need to coincide.
To illustrate this, imagine several strings in a row. Lets say we have wave packets travelling along these
strings, which are not running in parallel, but along a oblique line with respect to the strings. The phase
speed of each packet is clearly the speed at which it travels down the string. The group velocity of all
packets is the velocity at which the line connecting the packets moves, which is in a di�erent direction than
the packets themselves.

5.5.1 Standing Waves in Earth's Magnetic Field

Alfv�en waves can propagate along the �eld lines of Earth's magnetic �eld in the ionosphere. At the ends of
the ionosphere, the plasma ceases to exist - this is the same as setting boundary conditions for the waves
along these �eldlines that at the ends of ionosphere, the oscillation amplitudes are zero. This means that
standing Alfv�en waves can form in the ionosphere, which can be used to derive information about the
ionosphere. This is called the �eld line resonance, and on Earth, the periods of oscillations are in orders of
seconds up to minutes.

5.6 Magnetoacoustic Waves

The other �ve equations have dispersion relation
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By using a little bit of dimensional analysis, we can �gure out that the vector with the identical dimensions
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Hence the dispersion relation becomes
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I will make the equations to have dimensions of !. Therefore, we have0
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Remembering that cA = B0p
�0�0

and writing the acoustic speed of sound as cS =
q

 p0�0 , we can write the

dispersion relation as0
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By swapping some rows (which we are free to do) and multiplying some equations by -1
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Now, we need to solve the secular equation
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It turns out that this is a 5th order equation that is not very easily solved. Therefore, I could not determine
the eigenmodes properly here. However, we can make the dispersion relation alone simpler. We obtain the
dispersion relation by setting � = 0, which transforms the equation above into
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We can therefore factor out ! to get

!
��
!2 � c2Sk

2
� �
!2 � c2Ak

2 cos2 �
�� !2c2Ak

2 sin2 �
�
= 0

29



PX392 - Plasma Electrodynamics Revision Guide

We therefore have solution with ! = 0 - a static translational solution. Other, more interesting solutions
exist when �
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This is the dispersion relation of so called magnetoacoustic waves. We can notice that it is bi-quadratic in
!2, i.e. after multiplying through to get rid of all the brackets, we are left with
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which can be solved as quadratic equation in !2. This leads to
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The minimum value of the expression under the square root occurs when cos2 � = 1, and then, the expression
becomes (c2Sk

2 � c2Ak
2)2, which is always greater than or equal to zero - hence !2 is always real.

The maximum value of the expression under the square root occurs when cos2 � = 0. Then, the smaller
root is
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Hence, !2 � 0, and therefore, two real frequencies are de�ned
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Here, index F stands for "fast", index S for "slow". Magnetoacoustic waves are similar to acoustic waves
in the sense that they are compressive, longtitudal and are driven by the pressure gradient forces. However,
in plasma, the pressure gradient forces are modi�ed by the magnetic pressure gradients, which creates more
interesting behaviour.
Fast waves vary in speeds from maximum speed cF =

p
c2S + c2A when travelling perpendicularly to the

�eld (� = �
2 ) to speed zero when cA when travelling along the �eld. But, in this case, the fast wave in fact

degenerates to the Alfv�en wave, and thus becomes incompressive. For fast wave, the the magnetic �eld and
mass density oscillate in phase.
In the case when the slow wave propagates along the �eld with plasma � < 1, the slow wave travels at cS
and degenerates to standard acoustic wave. For the slow wave, the density and magnetic �eld oscillations
are in anti-phase.
Since we could factor out the k dependence, both fast and slow wave are ellastic waves for a given direction
of the �eld. The phase speed is therefore
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The phase speeds of MHD waves and Afv�en waves is compared in the polar graph in Fig. 5

5.7 MHD Instabilities

There exists a number of instabilities in plasma. We only brie
y mention few of them. In general, the
approach to �nd instabilities is to see whether small perturbations to a given state increase exponentially
over time. This usually indicates instability.
The Rayleigh-Taylor instability occurs when a heavier 
uid is sitting on top of a lighter 
uid in some
potential �eld. Any perturbation to the surface of the 
uid increases exponentially. This can be seen from
the dispersion relation of the surface waves, which goes something like

!2 = g
�L � �H
�L + �H

k

where g is the acceleration of the 
uids due to the potential �eld. Therefore, if the density of the 
uid on
top �H is higher than the density of the 
uid on bottom �L, ! is imaginary and the state is unstable.
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Figure 5: Polar graph of the sqaure of phase speed v2p of di�erent waves in plasma - the distance of the
origin determines v2p, the angle subtended from the x axes determines � - the angle between the direction of

propagation and the external �eld ~B0. At the origin, black lines and blue lines should respectively connect.
The blue lines represent the Alfv�en waves, black lines represent the slow magnetoacoustic waves and red
lines represent the fast magnetoacoustic waves. The maximum speeds cF , cA and cS are marked.

Kink and sausage instabilities occur for a jet of plasma. They both correspond to instabilities due to
magnetic tension gradients. Kink instability happens when a localised wavelike bend occurs on otherwise
straight jet of plasma. The amplitude of this bend tends to increase over time. The sausage instability
happens when the radius of the plasma jet decreases. The radius tends to increase without stopping until
the jet is cut in half.
Kelvin-Helmholtz instability occurs when two plasma 
ows are shear 
ows next to each other - plasma
tends to mix, i.e. perturbations to shear 
ow interfaces tend to increase over time.
There are many other instabilities, but these are not discussed here.

6 Summary of EM Wave Properties in Plasma

Name Dispersion Relation Polarization

Cold Plasma Without External Field

EP Oscillation ! = !ep Linear Longtitudal
EM Waves !2 = !2ep + k2c2 Transverse Linear

Cold Plasma With External Field, k k B0

EP Oscillation ! = !ep Linear Longtitudal

LH Waves k = !
c

q
1� !2ep

!(!ec+!)
Transverse LH Circular

RH Waves and Whistler Waves k = !
c

q
1 +

!2ep
!(!ec�!) Transverse RH Circular

Cold Plasma With External Field, k ? B0

Ordinary Waves !2 = !2ep + c2k2 Transverse in direction of Field

Extraordinary Waves k = 1
c

q
(!2�!21)(!2�!22)

!2�!2
H

RH/LH Elliptical, Longt. + Trans.

MHD Waves, k �B0 = cos �

Alfv�en Waves !2 =
B2
0

�0�0
k2 cos2 � Transverse linear

Magnetoacoustic Waves (!2 � c2Sk
2)(!2 � c2Ak

2 cos2 �) = !2c2Ak
2 sin2 � Lontitudal

31


	Plasma Characteristics
	Definitions
	Electron-Plasma Oscillations
	Debye Screening
	Plasma Criteria

	Plasma Dynamics
	External Magnetic Field
	Drift Motion
	Gradient Drift
	Curvature Drift
	Ring Currents


	Optical Waves in Plasma
	Optical Eigenmodes
	No External Field
	Radio Waves in Earth's Atmosphere

	Waves Propagating Parallel to External Field
	Faraday Rotation

	Waves Propagating Perpendicular to External Field
	Heating Plasma


	Plasma Kinetics
	Temperature Effects on Plasma
	Vlasov Equation
	Waves in Vlasov Equation
	Origin of Imaginary Part


	Magneto-Hydro Dynamics
	Equations of Magneto-Hydro Dynamics
	Static Equilibrium
	Plasma Jet
	Plasma 
	Sunspots

	Freezing-in of the Magnetic Field
	MHD Waves
	Alfvén Waves
	Standing Waves in Earth's Magnetic Field

	Magnetoacoustic Waves
	MHD Instabilities

	Summary of EM Wave Properties in Plasma

