PX392 - Plasma Electrodynamics Revision Guide

1 Plasma Characteristics

A plasma is a state of matter in which the atoms of the matter are ionized and relatively free to move -
the dominant interaction of the particles, ions and electrons, is by the macroscopic electrodynamics forces
created by differences in concentrations of the ions and electrons. Usually, however, this is not satisfied
perfectly - the particles still have some contact interactions when they collide with each other, not all the
atoms may be ionized and the concentration of the charged particles might be too low.

We will now discover a few basic properties of plasma, and use these to figure out reasonable criteria for
systems to be in a state of plasma.

1.1 Definitions

A few metrics should be defined for description of plasma - the number concentration of particles of certain
species x is n, = %, where dN, is the number of particles z in an infinitesimal volume dV. So, for
example, the concentration of electrons is n.. This can be related to mass density as

P =MgNy

and to charge density
Pq = Qully

Consider now that particle z is the ionized state of particle y (for example y = H, z = H'). The degree
of ionisation of y is then defined as
Ny

Y= Ng + Ny

Importantly, the degree of ionisation alone does not determine the quality of the plasma - a = 1, typical
for the Sun, and a = 0.01, typical for Earth’s ionosphere, can still represent a good plasma.

Usually, ions and electrons move at very different velocities in the plasma, and therefore we usually assign
different temperature to each species, and denote it as T, Ty, etc.

The usual property of plasma that it tries to restore the equilibrium state, in which all electrons and ions
are equally spread so that there is no overall motion without external force.

1.2 Electron-Plasma Oscillations

This is the classic phenomena in plasma physics. Consider that for some reason, the equilibrium of plasma
is perturbed by a slab of electrons moving away from the ions, as in Fig.

Figure 1: The full line represents a midplane of ions, the dashed line represents the midplane of electrons.
The displacement vector Z points towards the midplane of electrons and E is perpendicular to this plane.
The dotted lines represent three different integration planes.

The slab has thickness © = |Z.| + |Fe| = |%i| + |7:], with |Z.| = |%;| = |7:| = |J.]| = £. The total charge
inside the electron slab due to the displaced electrons is

Qe = —en.S(|Ze| + |Je]) = —en.Sz
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where S is the surface of the slab boundary. This means that the charge in the slab of the now stranded
ions is

Q; =en.Sx
as overall, the plasma is assumed to be electrically neutral. Consider now the electron slab alone. Using
Gauss’s law, if we integrate over the boundary of the electron slab, we expect E_ tobe symmetrical around
the midplane of the slab (plane in the middle of the slab) and perpendicular to the midplane and boundaries
of the slab. Therefore, the integral of the electric field over the boundary of the electron slab is

// E_-d§:2E_S:%
S. €0

Hence, we expect

B Q. __enex
2560 260
and in between the slabs, we expect
- ene . ene .
E_ = —— = —X;
260 Ye 260 !

where ¢, is the unit vector in direction of g.. Outside the slabs, we expect

- enex enex

- = Te = x;
260 260

Similarly, but with exchanged sign, for the ions we expect

- enet
= €T;
+ 260 !
in between the slabs and
B et eneT .
+ 260 Yi 20 i
Therefore, the total field in between the slabs is
S eneT enex
E = ° (i’,ﬁ-:ﬁz): ° z;
260 €p
The field outside the slabs in the direction of g; is
S ENeT . eNeT
E = i ——U. =0
%0 Yi %0 Ye

and similarly in the direction of Z. outside the slabs, field also goes to zero. The force on an electron in
between the slabs is then

F =mad=—eFE

where m is the mass of the electron and @ is the acceleration of the electron. Usually, electrons are much
lighter than the ions, and therefore we can neglect the motion of the ions with respect to electrons, i.e.

L d*F
a = —F
dt?

as the separation is only due to the motion of the electrons. Hence

a2z ene . e’n,

5 — —€—ITT; = —
dt? meg meg

-

which is an equation of simple harmonic motion with frequency

e%n,

(1)

Wep =
P meg

This is called the electron-plasma frequency, and these oscillations are called the electron plasma oscillations.
They can be viewed as effort of plasma to balance equilibrium but overshooting the equilibrium position
due to the electrons’ non-zero inertia.
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1.3 Debye Screening

While electron-plasma oscillations correspond to dynamic perturbations to local charge density of the
plasma, Debye screening is an electrostatic phenomenon. Consider that we introduce some extra static
charge ¢ into the plasma. This creates electrostatic potential in the plasma ¢. The electrons and ions than
move in order to minimize their potential energy. The situation is described by the Poisson equation

Vg ="
€0
We will describe a simple 1D model, in which we assume that p, = e(n;—n.) and try to describe the potential
far away from the inserted charge gq. At non-zero temperature, the excess concentration of electrons and
ions around the inserted charge will correspond to Boltzmann distribution as

_(=e9) o
ne = nge *BTe = ngersTe

where ng is the equilibrium concentration of electrons. Similarly,

e

n; = nge BT

Therefore

—ed ed
Pq = €Ng (ekBTi — ekBTe)

Phenomenologically, we expect that if the charge is presented into the plasma, other charges of opposite
signs will gather around it, decreasing the overall charge enclosed in the volume around the initial charge.
Therefore, we expect the excess concentration of electrons and ions to decrease as we move further away
from the charge, until it reaches the equilibrium value. Therefore, we expect ¢ — 0 in great distances from
the inserted charge. In these distances, we can approximate

_ o 6 \\_ o (1,1
pq—en()(l ol <1+kBTe>>_ enokB <Ti+Te>

which is linear in ¢. Therefore, Laplace’s equation linearizes to (in 1D)

d? B eng <1

1 _ 1.2
@2~ e n+n>¢—’“¢

Which can be solved by
¢ — Aekz _I_Besz

Given our boundary conditions that ¢(z — co0) — 0, we have to set A = 0, and thus we have

¢o<e_kw:e 2D

where the decay length A\p is the Debye decay length.

kBCO TeTi
Ap = 2
b \/62n0 <Te+Ti> )
For the case we discussed before, when the motion of the ions is negligable, we would have concluded that

the ions stay fixed and do not change number density, i.e. n; = ng, which happens for T; — co. And we
can see that for this case Ap(T; — co) becomes

kpeoT,
Ap = /B
€“MNyo

Usually, we would write n, = ng, as we usually mean the equilibrium concentration of electrons when
talking about plasma, properties.
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1.4 Plasma Criteria

In order for plasma to behave like plasma, the electron-plasma oscillations and Debye screening must look
like material properties, not like dynamic processes of the entire system. This means that we require the
system to be much larger than the Debye screening length Ap.

L> \p

Furthermore, we require that the concentration of electrons and ions is sufficient to behave like plasma.
This usually means that we need Debye screening to effectively take place, which can only happen if the
continuum approximation for the potential ¢ is valid, which occurs when the number of charges around the
inserted charge is big. The number of charges around the inserted charge is called the Debye number and
can be found as number of charges in sphere of radius equal to Debye length

4 4 (eokpT,)*/?

Np = -mAhne = 1o

P gt = 3t e i,

This is also called the plasma parameter, and we require Np > 1.

Lastly, we require that the electrons are pretty much free to move. This corresponds to case when the mean
time in bewteen collisions 7 is much bigger than a time of one cycle of electron-plasma oscillations, i.e.

2 €gm
=27 3
Wep e’n,

T >

2 Plasma Dynamics

This section explores further how plasma behaves when different forces act on it.

2.1 External Magnetic Field

When an external static magnetic field éo is present, the equation of motion of the electrons in plasma

becomes i
i L o=
m— = —el X By

dt

where ¥ is the velocity of the electron.
By taking a dot product with @, we can show that
L di md@-0)  md(|7)?) R _

mU‘E:Q dt :5 dt Z—E'U‘('UXBO):O

Therefore, the magnitude of ¢ does not change, only its direction. By separating ¢ = )|+, to components
parallel and perpendicular to EO, we have (as these two vectors are perpendicular to each other)

do

mﬁ = _e(m‘ X EO) =0
dv L
m% = —e(¥, X By) = —evByf

where 7 is the unit vector in direction of ¥, x By.
Consider now a case when By||k. Then, ¥} = (vg,vy,0) and we have

dv,

m - —evy, By
dv

md—ty = ev, By

By taking the time derivative of the second equation, we have

d*v, dv,
=eB
g Ty
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Substituting in from the first equation

vy 22 1
mos =€ By Uy

v, B}

ar = m2 Y

Therefore, we can write that
vy = Asin(wect + ¢o)

where ¢q is the phase and

Wee = W (3)

is the electron cyclotron frequency, or the gyral frequency. By substituting back to find v,

d 1
v, = em?()% = w—ecAwec cos(Wect + ¢g) = A cos(wect + Po)

Therefore, the electron travels with 4, and rotates around the direction of Eg with frequency w... This
motion is called the gyration. The radius of the gyration can be estimated as follows. Since the motion in
x and y is oscillatory, v2 = w2.2® and v; = w?.y* where * +y* = R? where R is the radius of gyration.
Therefore

vl =0} + vl =Wl R’

In a thermal plasma, the gyration takes two degrees of freedom, i.e. the expected energy is %mvi ~ kgT,.

Therefore
R /QkBT m  [2kpm VT,
- wec eBy e2 By

In the lecture notes, we are provided with numerical result that differs from the one provided here - we are
given

TK] 1
— m
11605 Bo|[T]

However, this result is relatively close to the result obtained before, so I thought I will still include it.

R=24x10"°

2.2 Drift Motion

Consider now that another force £ acts on the electrons (w1th charge q) in the plasma perpendicularly to

direction of BO For the sake of brevity, lets assume that BO = Bok and F=Fj 7. Then, the equation of
motion becomes .

dv 45 F

R kB _|_ J—

dt m 0
Lets now assume that this force changes the speed only very slowly. We can then express ¥ =
dstd = 0. This leads to

—

i + U4 where

—

di F
" luxBo+£vdkao+—
dt  m
We can see that this becomes a steady equation of gyration if we have
B . —Fj
450 By x = J
m m
~ —F .
Gax k= ——j
qBo

By taking a dot product with j

By taking a dot product with ¢
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and we know that the motion along the direction of the field is unimpeded, as Fis perpendicular to the

field. Therefore ¥ - k = 0 and
F F .

Ug=(—,0,0) = —1
d (qBO s Uy ) qBO
In order to represent this in basis-free notation, we recognize that Fx EO = FBOj x k= FBO%, and therefore
N ﬁ X EO
q|Bol?

(4)

[~
U

Therefore, the particles in plasma gyrate as usual with @ and also undergo drift motion described by ;.

2.2.1 Gradient Drift

Consider now a case when the static B field slowly changes, so that around any particular point 7y we can
Taylor expand

F:TO
-,

The equation of motion then becomes (in frame where 7 = 0)
dv q*x§+q"x((" V)E)
— = —0 —7 -
dt m °Tm
In a case when the direction of B is always the same and B simply changes magnitude in some direction,
we have (7- V)B || B, and therefore @ x ((7- V)B) L B, and we can therefore predict that the behaviour
produced will be a resultant drift velocity of the particles (here, F' = ¢(7 x ((7- V)B)). However, solving for
the exact velocity is somewhat more involved, as the force is not constant (both @ and 7 change). However,
the resultant drift force is )
Ty x =B x (VB)
q
where B = | B|. Therefore, for positive particle in B = B(z)k and VB(z) = B'(z)i, B'(z) > 0, the particle
will drift in positive j direction.

2.2.2 Curvature Drift

Consider now By field which does not change magnitude, but changes slowly direction with local radius of
curvature R. Let n be the vector normal to field lines of Eo in the direction into the centre of curvature.
The particle tries to keep its centre of gyration on the field line of By - this creates an effective centrifugal
force on the particle

7 muj
F.=—— 1y

R

where v) is the speed parallel to Eo, which is constant. Therefore, we can directly say

mvﬁ

- - 2
FXBO mv . —
= = — I nx B

= -0 _ S 0= ——=—By x
q|Bol? qR|Bol? qR|Bol?

<
U

Therefore, particle drifts in direction perpendicular to By and perpendicular to the plane of the circle of
curvature. Therefore, if Bo = Byj 7 and n = —i, the particle would drift in positive k direction, given that
q is positive.

We should note that both curvature drift and gradient drift are sign dependent and will lead to creation of
currents in the plasma.

2.2.3 Ring Currents

Ring currents occur in Earth’s Magnetosphere. The magnetic field lines go from pole to pole and the field
gets weaker as we move further away from Earth’s surface. Therefore, the gradient of the magnetic field
points towards Earth, B approximately parallel to earths surface and radius of curvature vector 7. points
towards the surface. Therefore, both drift velocities due to gradient and curvature currents are in the same
direction, and therefore currents are induced in this part of magnetosphere. The nature of the current is
such that it induces new magnetic field that opposes the original field B , and therefore strong ring currents,
as they are called, can reduce the magnetic field of Earth.



PX392 - Plasma Electrodynamics Revision Guide

3 Optical Waves in Plasma

Now, lets consider electromagnetic waves incident on the plasma, with frequency high enough that the
motion of the ions can be neglected compared to the motion of electrons, i.e. the frequency of the waves w

W > Wie, W > Wip

where w;./;), are ion cyclotron and ion-plasma frequencies.
The electromagnetic waves can be expressed as

E = Re (Eoei(é'v66T7Wt))

where Re(z) denotes the real part of z and Ejy is a constant, generally complex. Usually, I will drop real
part and just assume that it is implied. Similarly, for B

B= B’Oei(ﬁf’fwt)

Since plasma is a conductor, we can assume that we will have some form of Ohm’s law
L

f:UE

where o is generally a tensor. We now need to make this consistent with Maxwell equations. The fourth
Maxwell equation is
1 0E

VxB= u0]+28t

. | . 1 /1 L — ; .
V x B = oo B + 5 (—iw)E = (a—iwl) B==r <I+ Za) I
& & €0 C Weg
We usually write € = I+ =0, where I is the identity tensor.

Now, consider the effect of E and B on the change of position of the particle. From the 3rd Maxwell
equation

W 4 0B .
VXE=ikxE=——=1iw
ot
Hence
. W, = -
Bl ~ 2-|B) = d| B
|k|
The Lorentz force on the electrons is then
i  —e = .
Y _TE_ 5« B
dt m m
dv |17| =~
G|~ s+ =

We can see that in a non-relativistic approach, the effect from the wave of the B field on the motion of the
electrons is very small compared to the effect from the electric field E. Therefore, we will usually neglect
this effect.
In order to generalize, we could however impose some background ﬁeld By which is not wavelike and
therefore has an effect on the electron motion. We are therefore setting B B+ BO Then, the Lorentz
force becomes .

di: - —%E - %17 x By

Lets now assume that Eg = Byz and that the velocity of the electrons is also wavelike, i.e. 7 = ﬁgei(E'F_“

Then

&
=

) e s e
—iwl = ——F — —17 x By
m m
ie = e
t=——FE— —¥x By
mw mw
.
Since ¥ x By = (vy, —vg,0) By, we have ‘
ie
Uy = — E.
mw
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ie ie
vy, =—FE,+ —wv,By
y y
mw mw
ie ie
Vg = ——F, — —v, By
mw mw

Substituting from the last equation into the middle one

e
vy= g, 4 O(JGEI_Z@ )

Y

mw mw mw mw
ie e?By e? B2
vy = ——FE, + 5 2E$ 55 Uy
mw m2w m2w
Remembering that 20 = w,,
. 2 2
ie w w
vy = — E, + TECEI + e;vy
mw By w

Hence
e Wee i e Wee iw
’Uy:f o2 EI_ 2 Yy —< 5 2Em_ 5 2Ey
m \ 2 (1_ ) w(l— e2c) m \w? — w2, w? — w2,
w w
Hence
- - . . 2
—ie Wee € Wee iw e (—i w2, Wee
Vo = By — X NS b s s =\t o) B 5 o By
mw w o om\w?—w?, w? —w?, m \ w w? — w2, w? —w?,

Therefore, we have

This can be summarized as

Zzw 2 Zwec 2 0
. e . e wec(;w weci;w .
v = ECYE = E wgcjucjz w2 —w? 0 E
0 0 !

The current induced by the wave can then be expressed as

2

- . e = e’ne = 5 =
J=pUV=—en,—alk = — aF = —eowf aF
m m P
. 2 . rd =
where w,,, is the electron-plasma frequency w., = Gm?O With reference to the Ohm’s law, j = o FE
o= —euw’ a
= 60 ep
Therefore
2 A
Wep “Wep .
w2 1+ wi—w? wle—w? 0 e —tes 0
e wee
e=I+—o=1- —qa= Ber o 14 —per 0 =1 iea € 0
WeEQ w W —w w2 —w
Z 0 0 €3
0 0 1— =
And we now know that V x B = =%*?¢€F in terms of E.

62
If we take curl of the third Maxwell equation, we have
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Using the fact that both E and E are wavelike
V x (Vx E)=V(V-E)—V2E = ik(ik - E) — (i|k|)2E = —k(k - E) + |k|E

Therefore, we have

()

The electric field of an optical EM wave in plasma must obey this equation. If we are searching for linear
waves, we need the equation to be obeyed for any vector E that we use as representation for the linear
waves. This will clearly put some restrictions on the values of k and w the wave can have - this equation
will provide us with the dispersion relation. In order to find the dispersion relation, we need to rewrite the

above equation in a tensor form. The first term in the equation becomes

L ky(ks By + kyEy + k. E.) k2 koky kek. E,
k(k-E)=| ky(koeEy +kyEy+k.E.) | = | koky kf/ kyk, E,
k,(kzEy + kyEy + k. E.) kyk. kyk, k? E,
The second term is
k2 + K+ k2 0 0 E,
|k|*E = (k2 + k} + k2)E = 0 k2 + k2 + k2 0 E,
0 0 k2 + k‘Z + k2 E.
We already know the tensor form for the third term, so we can write that
e o~k —k ok —it%e ko k- )
k(k-E)—|k|°E + ?eE = koky +i% e “rer — k2 — k2 . kyk. E=0
kzk. kyk. “reg — k2 — k;
We can also rewrite this in terms of refractive index vector
N=Sk
w
as
W2 - N; — N? NwNy‘— ie2‘ N, N, LW
— N,Ny +iez € —NZ— N2 NyN. E=-—-ME=0
¢ N,N, N, N, e — N2 — N2 ¢
This equation applies for any E if detM = 0, i.e.
€ — N; —NZ NN, —ie N, N,
NmNy+Z‘€2 €1 —Ng—Ng NyNz =0
N, N, N,N. €3 — N2 — N2

(6)

This is the required dispersion relation, which will help us predict the types and basic behaviour of optical

waves that propagate through plasma.

3.1 Optical Eigenmodes

More precisely, we might be interested in the polarization of the waves given by the dispersion relation. To
solve this, return to the original equation ME = 0. If E is the eigenvector of M, we have a vector that can

potentially always satisfy the dispersion relation, if its eigenvalue A satisfies
ME = \E =0
A=0

Therefore, we can solve |M — AI| = 0 to find eigenvalues of M, use these eigenvalues to find eigenmodes E
which can propagate through the system, and solve A = 0 to obtain dispersion relations of the eigenmodes.
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3.2 No External Field

In the case when EO =0, wee = 0, and therefore

2 Wee
€ = Yer o =0
2702 — 2
ec
2 2
w w
ep ep
61—1+ 5 2:1— 2:63
w2, —w w

Also, since EO = 0, there is no preffered direction in the plasma, and therefore we should expect the same
result from the dispersion relation. We can therefore choose that the wave propagates, for example, in the
x direction, so that N, = cw—k, N, = N, =0. The secular equation becomes

63—)\ 0 0
0=|M— | = 0 e—N2-2) 0 = (€3 — N)(e3 — NZ — \)?
0 0 €3 — N2 — A

Therefore, we have one eigenvalue A\; = €3 and two degenerate eigenvalues Ay = €3 — N2. The corresponding
eigenmodes are given by (M — AI)@ = 0. For A,

0 0 0 aq
0 —N2 0 a, | =0
0 0 —N? a.

which implies that the normalised eigenvector d; will be

1
0
0

L
S
Il

As the wave propagates in the z direction, this wave represents longtitudal waves - oscillation is in the
direction of propagation.
To find the dispersion relation, we solve Ay = 0

63—1—;5—0
W = Wep (7)

So, this mode corresponds to oscillations at a single allowed frequency, wep, therefore this behaviour corre-
sponds to the electron-plasma oscillation. To further illustrate this, we can find that while the phase speed
is

W We
wEET Tk
the group speed is
dw
Vs = g =Y

so at this wave, there is no real transport of matter.
The other two eigenvectors are given by

z 0 0 ay
0= (M — )\21)62 = 0 0 0O as
0 0 0 as

which is satisfied when a; = 0. Therefore, we can find two orthonormal eigenvectors

0 0
—.\2 = ]_ ’63 — O
0 1

The wave propagates in the x direction, and the eigenmodes are in y and z directions - this corresponds to
any transverse, linearly polarized wave. The dispersion relation is

63—N2:0

T

10
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Wy | R
1= w? w?
w? =k + wgp (8)

These waves are therefore dispersive, although in the limit of large k (small wavelength), w? — ¢2k?, which
is dispersion relation for elastic, i.e. non-dispersive waves.
Generally, the phase speed of these waves is given by

and the group speed
_dw Ak c

- g ¢ 2
dk [2k2 + wgp 14 :;,}52

Notice that the phase speed is bigger than c. This, however, does not contradict the special relativity, as
any real transport of information, or matter, can happen only at the group speed, which is smaller than c.
The dispersion relations for the waves in zero external field are summarized in Fig. [2]

Vg

w ’

Figure 2: The blue line represents the dispersion curve of transverse waves in zero external field. As k
increases for these waves, they start to behave like elastic waves and approach dispersion curve w = ck.
The black line represents the electron-plasma oscillations.

One peculiar property of these waves is the fact that the product of phase and group speed goes to ¢?

2
u)ezr) c 2

e
2.2
VAR

If we have a wave incident on the plasma that does not satisfy the dispersion relation, we can have for
example, for low frequency waves

vptg = c\/ 1+

2

ep <0

Ak =w? —w
wgp—uﬂ

Then, we have k =1 z

E — E'Oeikxe—iwt — E’Oe—iwtefw,/wgpfuﬂ/c
Thus we have an evanescent wave that exponentially decreases as it enters the plasma, with constant of
decay k, which means that the wave penetrates the medium up to so called skin depth zp
c
Zp =

2 _ 2
wep — W

The wave that is prevented from entering the medium is then usually in part absorbed in the evanescent
wave, but also reflected.

11
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3.2.1 Radio Waves in Earth’s Atmosphere

In the Earth’s atmosphere, the number of ionized particles rapidly increases in the ionosphere. This increase
means that the concentration of electrons n. here increases, and therefore w,), increases here as well. This
means that wave that had real dispersion relation below ionosphere with w® — (w/,)*> > 0 (where w},, is the
electron-plasma frequency below ionosphere) can now have w? — wfp < 0 and therefore gets reflected by the
ionosphere. This enables transmittion of radio waves by bouncing of ionosphere and surface of the Earth,
repeatadly.

3.3 'Waves Propagating Parallel to External Field

Consider now a wave that propagates in the same direction as a non-zero field B:O = Byz. This means that
N, = % and N, = N, = 0. The secular equation we have to solve is

61—N§—/\ —i62 0
2'62 61—N§—/\ 0 =0
0 0 63—)\

(€5 = M(er = NZ = 1)? = 5] =0

We therefore again have a mode at \; = €3 and two other modes at Ay = ¢ — N2 —¢€5 and A3 = €] — N2 +¢s.
The eigenvector for \; is

€1 — J\/YZ2 — €3 —i62 0 a;
iGQ €1 — Nj — €3 0 as =0
0 0 0 as

The equations for the first two components a; and as can be rewritten as
Pa; —iQas =0
iQa; + Pay; =0
where P = ¢; — N2 — e3 and Q = €3 and generally, P # (. Multiplying first equation by @ leads to
PQa, = iQ%as
Multiplying second equation by —iP leads to
PQa; = iP%a,

Equating these two, we recover P?ay = ?ay. For this to generally apply, we need as = 0. This directly
leads to a; = 0 and therefore, we have again

with dispersion relation €3 = A = 0, i.e. w = wep. This is exactly the same electron-plasma oscillation mode
we observed when By = 0. Perhaps this should not be too surprising, as this is a longtitudal mode with
electrons moving parallel to the field. The force of this field on the electrons is then proportional to ¥ x B%,
which for ¥ || By goes to zero - the electron plasma oscillation mode is undisturbed by the additional field.
For AQ 261—N§—62

€9 —7:62 0 ay
i62 €2 0 a9 =0
0 0 €3 — €1+ N2+ e as

This is satisfied when a3 = 0 and a; = as, i.e. for case

12
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This is somewhat non-standard, as the eigenvector is complex. To give interpretation to this, consider the
form of the wave field £

) (Z(E 7 — wt)) exp (z(lg 7 — wt))
E = Edye' "™ = % exp (—i%) exp (2 P ) = 55 exp (i(k 7 — wt — g))

where I used —i = e~#%. This eigenvector implies that the eigenmode has a phase shift between the = and
y components of the oscillating field of 5 and that the fields have the same magnitude in both directions -

the eigenmode is a circularly polarized light. In this case, this is the left-handed circularly polarized light.
The dispersion relation is obtained by Ao =0

61—N3—62:0

2.2 2 W2 Wee ‘ _ w2
702 =€ —€ =1+ 26p2— 2617“’2:14—&)51) W Dee =1- p
ec — W Wee — W w(wec w)(wec + w) w(wec + W)
w2
k=2 1- ——2 (9)
c w(wee + w)

Before we discuss the properties of this wave, lets determine the other eigenmode first, as we will discover
that they are related. For A3 = ¢, — N2 + ¢

—€9 —iEQ 0 ay
ieg —€9 0 as =0
2
0 0 63—61+Nz—62 as

Again, we have az = 0, but this time ia; = a2, and therefore

which corresponds to right-hand circularly polarized light. The dispersion relation is

/\3261—NZ2+62:0

k2 1. w2, N w2, e il Wee + w 1. w2,
w? w2, —w? W2 —w? P (Wee — W) (Wee + w) W(Wee — w)
2
w
k=2 1y —2 (10)
c W(Wee — w)

The dispersion relations for these modes are summarized in Fig. [3
Several things can be determined about these two wave modes. We will start by cut-off frequencies -
frequencies when the k starts to become complex rather than real. For left-handed waves

N L T
c W(Wee + w)
LW
W(Wee + w)
W? + Weow — wfp =0
[0 4 deo?
—w we. + Wep 1 /
w = 266 + 2 = 5 ( wgc + 4&)317 - wec)

Where I chose the positive root. We call this frequency wy.
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Wee Wep

Figure 3: The red line represents the left-handed polarized waves, the green line represents the right-handed
polarized waves. We can see that left-handed waves only have one branch, while right-handed waves have
an extra, so called whistler branch. We also still observe electron-plasma oscillations (black line). Notice
that the axes for w and k are swapped.

For right-handed waves, cut-off frequency is

k=9 iy Ch g
c W(wee — w)
2
w
1+ —2 __ =90
W(Wee — w)
wz—wecw—wprO
[w? 1 42
w Wee + 4Wg 1
W = 564_#:5( Wgc+4wgp+wec)

where I again chose the positive root. This frequency is called ws. We should note that ws > w;. But,
importantly, if we have w < w,, for right-handed waves, we have again a valid dispersion relation. This
means that right-handed waves have a second branch of the dispersion relation from w = 0 to w = wee.
These waves are called the whistler waves. We can see that at w =0

2 2
. . w We . w e
limk=lim =4/1+ — = lim =4/ —2 =0
w0 w0 ¢ Wwee —w) w0 ¢\ wwee

Other interesting property is that for right-handed waves, we can hit a resonance when w = we., as then
k — oo. This happens because the incident right-hand circularly polarized waves have the same frequency
and orientation as gyration of the electrons in the plasma due to the external field. Therefore, the incident
wave moves the electrons practically without any oposition - leads to resonance. This specific resonance
is called electron cyclotron resonance. At this resonance, the incident wave tends to get absorbed by the
plasma, rather then reflected.

We should also notice that for low frequencies, only the right-handed waves can propagate through the
plasma. This is because the left-handed waves get diminished by the gyration of the electrons, which is in
opposite direction. At very low frequencies, the whistler branch of the right-handed waves behaves as

2
w w w w 1 w
k==4/1+ i N —L2 = w22
c Wee —w) € /WWee ¢ w,,
Wee -
w= —£2k?
w2
ep

Therefore, we have dispersive waves with w oc k2, and therefore the group speed is vg o< k oc A~L. Therefore,
longer wavelengths travel slower with these waves - this produces a characteristic whistle profile when a
point signal propagates via this wave - hence the name whistler waves.

14
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3.3.1 Faraday Rotation

Consider now a linearly polarized light propagating along the direction of the external magnetic field is
incident on the plasma. Suppose that frequency w > wy, hence the wave satisfies dispersion relation. How
does this wave propagate through the plasma, since it is not the eigenmode of the dispersion equation?
We can express linearly polarized light as superposition of left-handed and right-handed circularly polarised
light as

1 4 I E,pett2? + Byethr 4
Ejn = Ey + E,p = Epp, —i ez(km—wt) + B, i ez(kzz—wt) — Z-Evrheikgz _ Z'Elheilmz e—zwt
0 0 0
where ky = £4/1— m and ky = 1+ m. We can therefore see that as the linear light

propagates throught the material, the angle of the polarisation changes. For the case when the light is
initially perfectly linearly polarized, E;, = E.;. At z =0, Eyp, is

1+1 ‘ ‘ 1
Ein=FE | i—i |e ™ =2E4e ™[ 0
0 0

Therefore, initially, the light is polarized along the z direction. The angle to the z axis after the light has
travelled distance z in the medium is therefore given as A¢ = tan~'(E,/E,). Here

E, ¢
—_ = 1— - =1— - X =1 = tan
Ez ezkgz + ezklz ezkgz + ezklz efi(klng)z ei(kzgkl)z + e*i(h;kl)z

. . i i o (ky+ko) (ko —ki) i (ko—k7)
.ezkzz _ ezklz ,6””2" _ ezklk e~ iz e e kg _ kl )

ko — k1
z

Ag ==

For high frequencies

w w? w? w w? w?
ko—ky=— 41+ —2 _ —J1—-—— | (14——F 14— )=
M T \/ W(Wwee — w) \/ W(Wee + w) ¢ 2w (Wee — w) 2w(Wee + w)

2 2 2
ﬂ 1 1 _ Wep [ Wee F W+ Wee —W N _wepwec
2¢ \Wee =W Wee +w 2c w2 (7 _ 1) cw?
Hence 9
Ad = | WepWee
2cw?
2
H 2 _ e ne __ eBo
Using wg, = o and we, = <
3
Aj=— e’n.By
2cegm2w?
Or, in infinitesimally
do e’
— =————n.By 12
dz 2cegmiw? € (12)

Therefore, we can determine the concentration of plasma or external magnetic field by examining the
polarization of light. If the light passes through part of plasma where n, or By is not uniform, we then

have
A —’ Bod
= / 2060m2w2 /Lne 04

where L is the path the light travels.
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3.4 'Waves Propagating Perpendicular to External Field

In this case, assume N, = 0 and choose for example N, = Cw—k and N, = 0 (the choice is arbitrary and does

not influence the result). The secular equation becomes

61—A —i€2 0
i€2 61—N$2—A 0 =0
0 0 €3 — N2 — )

(3= NZ=X)[(e1 =A)(e1 = N2 =X —€3] =0

First solution is when \; = €3 — N2. Then

€ + N;f — €3 —tes 0 a
ieg €1 — €3 0 a9 =0
0 0 0 as

This can generally apply only when a; = az = 0 and thus

0
0
1

N1
S
I

These waves are polarized in the same direction as external field By and travel transversly to this polariza-
tion. The dispersion relation is

‘ w, k?
0:A1:63—N§:1— 65—62
w w
w? =k 4w, (13)

This is the same behaviour as in the zero field waves. These waves are therefore called the ordinary waves.
Again, the oscillations of E are parallel to By, therefore the motion of electrons @ [ By, so it makes sense
that the presence of the external field does not influence this motion.

For the other two eigenvalues, we have

(&1 =AN(er = Ng =N —e5 =0
)\2—(61—N§+61))\+61(61—N§)—€§:0

1 _ 1 _
A= (20 - N2z yfea - Nt r G - @ v and) = 3 (20 - 02N ag)

Therefore

N2 Nt o o2 ;
- t\ 7 + € —1€9 0 ay

. N2 /| N4 —

1€2 _TEZF T’—}—e% 0 as _0
N2 /N2 | 2 as

0 0 €3 —€— 5 F 74‘62

Right away we see that a3 = 0. However, requirements on a; and as are not so obvious. The equations are

N2 N4 . .
(;:F 496'1'65) ai — tesas = 0

N2 N4
iesa) — <2wi f—i—eg) as =0

Multiplying second equation by ies
N2 N1 ‘
—€e3a; — 7:” + Tw + €3 | (ie2az) =0
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Substituting in for (iezaz) from the first equation

N2 [NT )\ (N2 _ [NET .
ﬁ“%}* 4+@<2¢4ﬂa“:

N% N2 .
€§a1+ (Z_:_€§>a1:0

But, we can see that this equation applies for any value of a;. Therefore, there will be waves polarized
somehow in the xzy plane. But, before we explore these further, we will solve the dispersion relation, which

will help us simplify the expression for the eigenmodes.
The dispersion relation is best obtained by setting A = 0 in (e; — A)(e1 — N2 — \) — €3 = 0, which leads to

2 2 _ 2
e —ealN; =¢
4

c

2 2 4

w w w w
2 _ 2 1+2 e _ 4 P — Yee y ep
N2=T% _ wio—w? T (wi—w?)?  w? 7 (wi —w?)?
xr = - w2
“ 1+ 25

This equation is rather complicated, so I present only the result. It follows that

k:1¢@ﬂ—ﬁxw—w@ "

2 _ 2
c w? — W

where w; and wy have the same meanings as before and wy = /w2, +w?. is called the upper hybrid

frequency. We can again see that there will be a hybrid resonance at w = wy and that w; and wy will play
the roles of cut-off frequencies. At the resonance, the wave is again absorbed rather than reflected.

For the eigenmodes, it is sufficient to find out that
N2 ¢ €

2 2 2

2 261

Hence, we have two modes with the same dispersion relation. One mode is given by (using only part of the
matrix that mixes components in zy plane, as ag = 0)

2 2 5
&1 _ f2 & _ 2 _q € .
( 2 261 2 261 : 262 2 ) < al ) - ( _a _262 > ( al -
; _ €1 €2 _ &1 _ €2 as l€- —_ as
1€ 5 + % 1€9 €1

2 2€1

2
N4 62 62 64 € 6‘2
4 2 1 2 2 1 2
J+€2—i+i+7‘— — 4 =
€

which is satisfied when as = ii—fal. So, we have

which corresponds to an elliptically polarized wave, with the exact ratio of E,/E, dependant on the
frequency of the wave. This mode is right-hand elliptically polarized.
Similarly, for the other eigenmode

2 2
€ € . ;
<3—ﬁ+3+ﬁ i ><m>_<el—? ) g
2 2 = . ¢ =
] _€f 4 € 4 a4 € as 1€ S2 as
1€2 > tog T3 T, 2«
which is satisfied when as = —ii—;al.
61 = —1—

This mode is left-hand elliptically polarized.
We also see that both modes have oscillations in z direction and y direction - extraordinary waves are mix

of transverse and longtitudal waves.
The overview of the dispersion relations is presented in Fig. [
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Figure 4: The dispersion relations in waves travelling perpendicularly to the external field. The blue line
represents ordinary waves, the green line represents extraordinary waves.

3.4.1 Heating Plasma

We can remotly heat the plasma by radiating it at resonance frequencies. If we apply an EM wave parallel
to the direction of the external By field, we can use the RH circularly polarized wave to hit the electron
cyclotron resonance at w = we.. If we are providing radiation perpendicular to the external field By, we

can hit the upper hybrid resonance w = /w2, + w2,

4 Plasma Kinetics

Here, we will briefly discuss some very general phenomena that apply to plasma that might not be ideal or
not in perfect equilibrium.

4.1 Temperature Effects on Plasma

When there is a non-zero temperature present in the plasma, electrons tend to move around on their own.
This creates an electronic pressure, which makes modifications to some of the observed waves in plasma.
Generally, when there is a random fluctuation of electron movement, there is a gradient of the concentration
of electrons established, and therefore a force F' o« —Vn, is created. Modelling the electrons as an ideal
gas, we can derive that

_ NkgT
TV

where p is the pressure of the electrons and T their temperature. And thus

- nekBT

— p
Fo_v_t_
x VkBT

Consider now that the pressure gradient exists on the scale of the waves A\ = %’T Therefore

1 -

Fa k
kT ¥

Which leads to addition of effective sound waves into the system. These are longtitudal waves in the electron
concentration, occuring without any external field. This means that they will modify the electron-plasma
oscillation mode. This mode now becomes

wr=w?+ cik2

where ¢, is the speed of sound in the electron gas

kT
c, =1/ LEVBL
m
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where . is the Poisson constant for the electron gas. This means that there is some dispersion even for
the electron plasma oscillations, although for small temperatures, ¢s is very small and therefore the effect
is also very weak.

4.2 Vlasov Equation

If we want to describe certain system with most detail, we need a distribution function f associated with
the system. This distribution function is usually the function of position 7, velocity ¥ and time ¢ and
describes a probability that some part of the system is at position 7 with velocity ¢’ at time ¢. For a system
of many particles, f can describe the number of particles that are at position 7 and have speed ¢ at time
t. We could then normalize f to correspond to probability that the particles are in such state by defining

normalized distribution function 1
F(Fa Ua t) = 7f(7?7 177 t)
no

where ng is the concentration of the particles at equilibrium.
We can retrieve information from the distribution function using different integral operations, such as

where IV is the total number of particles in the system.
Very useful constraint on f can be made by requiring that the number of these particles is conserved, i.e.

dN
o

Since the integral in definition of N does not run over time, we can say that

0= 4 /// /// (70, ) d>vd®r = /// /// id3vd3r
dt space velocity space velocity dt

Therefore, we have the Boltzmann equation
af 0
dt
Expanding the total differential, we have

df Of dr; df  dv; Of
dt_6t+dt6r,-+dt67i_0

where Einstain summation convention is used and we sum over all spatial indices. We could also define

that
of _ (of of of
or 0z’ Oy’ Oz

and then rewrite the Boltzmann equation as

of - 0f [ F of
o T et a0 (15)

where I used ¢ = Z—f and Newton’s second law F = ma@ = m%-
If we now assume that our system of particles is plasma which is collisionless, the only force acting on the

particles is the Lorentz force F = q(E + 7 X E) Then, for electrons with ¢ = —e

of . of e =z L = Of
a+v-ﬁ—a(E+va)-%—0 (16)

This equation is called the Vlasov equation and is the basis of kinetic description of plasma. However,
calculations with it are very complicated, and therefore we will discuss its use only very briefly.
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4.3 Waves in Vlasov Equation

In a perfect equilibrium state with no external fields, we expect the system to be uniform and stationary,
ie.

f=fo(9)
Consider now a small wave-like perturbation to the system, which adds a perturbation distribution function
fi1(7,¥,t) to the total distribution function and similar perturbations to all other variables. The Vlasov

equatlon then is
Ofot fr) [ p 0ot fr) ep Olfotfi)
ot o mo o7

where I used the fact that for wave-like perturbations, effect of B is much smaller than effect of E. Using
the definition of fy and retaining only the expressions up to the first order in perturbation, we have

0_3f1+4 afl_EE’ dfo

0= =0

ot o m ' ov
Using the wave-like nature of fi, % = —iwfi, % =ik f1 and therefore, the Vlasov equation becomes
= Ofo

0=—iwfi + v lkfl — 7E1
ov

We now however have an equation dependent on the field El, which is created by the perturbation and we
would like to determine from f;. To get rid of this dependence, we will use the 1st Maxwell equation
- en
V-E= =——=°
€0 €0
where n. is the excess concentration of electrons. For our wavelike perturbation, this becomes

o o €N
Zk'El = —

€o

Here, however, we have only introduced another unknown - n., which is also perturbed. But, we can express
the concentration of electrons n. in integral form as

Ne = /// fi dv
velocity

To make the model simpler, consider now a 1D case. The Vlasov equation is

0= —iwf +ivzkz fi — EElz Ofo
m ov,
Hence of 1
e
fim =Bt x
m o,  ivgk, —iw

1st Maxwell equation is

iko Eyp = —— /j hud*v
€o velocity

e
..o
€okz velocity
Thus, by combining these two equations

ie dfo
B, =1—— /// — B, ——d%
e €okz velocity T ’l)zkz) e avl’

As only fy depends on the velocity v, we can factor out most of the terms inside the integral.

Hence
Ei, =i

9fo

_ Ove
/// V= 3y
veloczty wkw
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Hence, we can divide by F;,. Also, as we are in 1D model, we know that fo(7) = 6(vy)d(vz) foz(vs), SO we
have

2 00 %foz
1=-— Y= dv, 17
eok,m /_OO w — vk, v (17)

This equation sets up a condition for the relation between w and k, - this is the dispersion relation in terms
of distribution function f. If we change to normalized distribution function F' = foe

o
. 8 foa /10 2 oF
2 oo ZJ0=/70 o]
1= _ € Nyg v, 4P = _wep Ovg
€okem J_oo w— kg © ke J_ oo w— vgky

We can integrate by parts

w2 F [e’e) %) k F
1 — ep - _ T d .
k, <[w—kxvj_oo /_OO (w—kyvy)? v

For a bounded velocity profile, fo, (v, = £00) = 0, and therefore we have
[e.0]
F
1=u? / ———dv, 18
P ) (kgvy —w)? (18)

It can be shown that for a certain sensible choice of F', we can then obtain dispersion relation as

2 217.2 2
| Ye ckr . wgp OF

= 0
2 2 2
w w k3 Ovg lv.=

We can see that there are contributions from the electron-plasma oscillations, sound waves and some
additional contribution which makes w generally complex. This gives rise to phenomena such as Landau
damping and bump-on-tail instability.

We can see that the imaginary part of w will be proportional to %. This means that any wave-like quantity
(for example the electric field) will follow

(i Im(w)t) Im(w)t OF ¢

Ei, xe =e X edva
Therefore, if the distribution function is steadily decreasing with v, as is the case for example for Boltzmann

distribution F', any wavelike perturbation will tend to decay away with characteristic time

But, if at some point there is a bump in the distribution function, then for some v,,, the derivative is positive,
and therefore we have exponential growth of the wave-like perturbation. This is called the bump-on-tail
instability.

4.3.1 Origin of Imaginary Part

Consider integrating as a contour integral, assuming that closing the contour by a half-circle through
the upper half plane does not change the integral.

Then
o0 F 1 F
/_oo (hove ) V7 = l?/c R

where z = k,v,. This contour goes through one singularity that lies at z = w. This is a pole of second
order (assuming that F' is bounded along real line), therefore the residue of the integrand at this point is

Res _F z=w| = a—F
(z—w)2’" 7] 0z li=w
Hence the value of the integral is
/ F @ 1 <9 iaF ; Ov, OF im OF
———dz = - X 2mi—— =am = —
o (z —w)? 2 0z la=w 0z Ovy lv,=2  ky Ovg lv,=%
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where the factor of one half is due to the fact that the function goes through the pole. Thus

/ F vy = i 1 OF

= 1M —
— oo (kpvy —w) Wk% Ovy lv,=2

which is exactly the expression we see in the correct form, but with missing real parts. These are probably
missing because F is not fully analytic function and the integral of the remainder of F' that makes it analytic
produces the real parts.

5 Magneto-Hydro Dynamics

Magneto-Hydro dynamics is a discipline studying behaviour of plasma on big scales and on timescales long
enough that any motion of electrons could reach equilibrium. Generally, we could describe it in the Vlasov
distribution function formalism, but this is very complicated, so we will rather use formalism of classical
fluid dynamics.

In order for this to be appropriate, we assume mainly 3 things

1. Characteristic time of investigated processes is much larger than the time of electron motion processes

(eg 2T, 2%)

2. Characteristic spatial scale of the problem is much larger than the scale of electron processes (e.g.
radius of gyration)

3. Bulk velocities of the plasma are non-relativistic

Because we are at such long timescales, we can approximate plasma as a very good conductor in sense that
any imbalance in charge density will tend to be negated by electron flow almost immediately. Therefore,
the internal EM fields will be dominated by the magnetic B field.

As a quick illustration, consider a that a field E' is created in the rest frame of the plasma. By Ohm’s law

j=gE

where J_"is the current density and g is the conductivity - some very large number. Hence, any field in the
rest frame of the plasma is

This is especially important if we switch to some other frame of reference, where we observe fields E and
B. The non-relativistic Lorentz transformations lead to

E'=E+oxB
which implies
E~—-ixB (19)

Therefore, we can describe the behaviour of plasma at these scales using only the magnetic field B.

5.1 Equations of Magneto-Hydro Dynamics

Now, lets start building the differential equations needed to describe the plasma. Lets start with the
classical fluid equations. There are two equations in play.First one is the continuity equation, which is
straightforward

dp o
E-kv-(pv)—o (20)

where p is the mass density and @ is the speed of the plasma flow. Second equation is the Navier-Stokes’
equation. In our case, we will suppose that the plasma is collision less and hence inviscid, which will
transform the equation into Euler’s equation, which states

o . \. =
p<at+U'V>’U—<I)
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where & is the force density in the fluid. There are two main forces acting on the plasma - the force due to
pressure gradient and the Lorentz force due to field B. Therefore, we can write

5=—Vp+ v =—Vp+f><]§
where p is the pressure and V is some volume. Therefore
9 . . -3
p a-ﬂwv v=-Vp+jxB (21)

Finally, we need a way how to relate the pressure and the mass density of the processes. Usually, this is
done via some equation of state. In our case, this can be an equation of ideal gas

kg

m;

p pT

where m; is the mass of the ion (which dominates the mass of the particles) and the factor of 2 is present
because pressure is due to both ions and electrons.
But, more generally, for adiabatic processes in the plasma (flowing without external heating), we can write

:(2)-

Therefore, we have our fluid equations. Now, we need to explore Maxwell equations. Again, the first
Maxwell equation is not of interest, as any excess charge density p, will be quickly negated by electron
flows. Second Maxwell equation is sometimes useful, but as we will see, not always neccessary. Third
Maxwell equation is very interesting, as it describes how the magnetic field is induced in the plasma. Using
E=—-7x é, we have

— =V x (#xB) (23)
Fourth Maxwell equation again has a term

10E  19(@xB)

2ot 2 Ot
But, since time scales are relatively long and |U] < ¢, we can neglect this term. The terms that are left are
V x é ~ HO‘;

Now, we have all the tools needed. If we substitute this last result into the Euler’s equation , we have
a set of two scalar and two vector equations, with two scalar and two vector unknowns, which is solvable.
The set is

ap L
E—FV-(pv) =0 (24)
S 1 L
p<av+(z7-V)17> =-Vp+ —(VxB)xB (25)
ot Ho
d (p) _
ﬁ<m>_0 (26)
0B Lo
E_VX(UXB) (27)

These equations form a closed set. Therefore, all the other equations, such as the state equation, fourth
Maxwell equation or Ohm’s law can be viewed as only constitutive relations - useful for calculating variables
other than the ones used in equations above, which are p, p (scalars), B and ¢ (vectors).

Clearly, solving these equations is very hard, as the equations are generally non-linear. We can however do
several simplifications.
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5.2 Static Equilibrium

Consider a motionless plasma in static equilibrium. This means that any time derivatives, both partial and
total, equate to zero, and the velocity of the plasma is zero. This means that , and all become
identically zero. The only equation left is therefore the Euler’s equation , which now has form
1 L.
Vp=—(VxB)xB
Ko
Using identity

we have 1
(V x B) xﬁ:(ﬁ-V)§—§V(§-§)
and therefore 1
Vp=—>—V(B") + (B-V)B
2410
|BJ? 5 o\
Vip+— | =(B-V)B (28)

240

This enables us to define two specific variables - the magnetic pressure p,, = lﬁ ‘02 and magnetic tension

T = (E . V)g. These both act effectively as extra pressure or tension on the plasma, and their estimates
are a good way how to predict qualitative behaviour of plasma.

5.2.1 Plasma Jet

Suppose we have a cylindrical stream of plasma which carries current ; The magnetic field induced is
cylindrical and decreases as we move away from the cylinder. This means that the gradient of the magnetic
field is directed inwards, and so is the magnetic tension on the plasma. Therefore, the magnetic tension of
the plasma can balance the thermal pressure of the plasma and prevent purely radial diffusion of the jet.
The jet is however not stable to other deformations, as we will see later.

5.2.2 Plasma

Plasma § is a dimensionless parameter which characterizes whether the thermal or magnetic terms dominate
the behaviour of the plasma. We can estimate it by comparing terms in static Euler equation

For a spatial scale A, this becomes

Therefore we define

bpo
f="

with § < 1 implying that magnetic effects dominate, while § > 1 implying that thermal effects dominate.

5.2.3 Sunspots

Sunspots are places on the Sun where the magnetic field emerges from the surface. The field emerges
radially from the surface and does not change much radially. This means that

L d -
(B-V)B = (B, )B~0
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so the magnetic tension is zero. The static equation for the plasma then becomes

B2
v (p + > = const.
240

Labeling pg the pressure outside the sunspot, pg the pressure inside the sunspot and By the magnetic field
inside the sunspot (assuming that outside the magnetic field is zero), we have

Bj

PE=Dpo+ 5—

240
This means that the pressure at the sunspot is lower than in its surroundings, and the sunspot is supported
by the magnetic pressure. Alternatively, we can use the state equation to write (assuming that the density
p is somewhat similar, which is a reasonable assumption)

kp kp B2

2—pTy =2—pTy — —
m; m; 2p0

where Ty is the temperature inside the sunspot and Tk temperature outside. So

This means that the temperature in the sunspot is lower than outside - hence why it appears black.

5.3 Freezing-in of the Magnetic Field

The movement of plasma induces currents in the plasma, causing generation of magnetic field. A curious
result of this is that the fieldlines of B appear to always follow the plasma flow - they are effectively frozen
in the plasma. Microscopically, this can be explained by the fact that the particles always follow the field
lines via gyration - they always flow along the fieldlines of B. In fact, we cannot really distinguish what is
the cause and effect - whether the particles are stuck following the fieldlines or the fieldlines are frozen in
the plasma.
To illustrate this, consider a B = Byj field and velocity field 7@ = ayi - velocity in z direction steadily
increasing as y increases. The induction equation then states
95 =V x (ayBok) = aByi

ot
This means that B is increasing in the z direction - same direction as the speed ¢ is increasing in. We
should note that this is only very crude illustration.

5.4 MHD Waves

In order to discover which waves can exist in the plasma on these scales, we need to linearize the MHD
equations. Lets then suppose we have some equilibrium density pg, pressure py and magnetic field éo,
all of which are static and uniform. Furthermore, the equilibrium velocity 75 = 0. Then, we allow for
some small wave-like perturbations to all these variables, i.e. B = Eo + El, p=po+p1, p=0p+p and
U = ¥1. Assume that the wave propagates in the z direction, and that the equilibrium By field is at an
angle 6 to this direction. Without any loss of generality, we can chose that By lies in the zz plane, so that
By = (Bosin 8,0, Bg cos ). We substitute this into our MHD equations and retain only terms that are up
to the first order in perturbative terms.

The continuity equation becomes

d(po + S
X0t 2) 9 (po 4 p1)(@1)) =0
As po is static and uniform, we have
) .
% +poV -1 =0

where I neglected the second order term p;#;. Applying the wave-like nature of p; and @7, the equation
becomes

—wp1 + pokvi, =0 (30)
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The adiabatic equation becomes

d< Do+ p1 ):0
dt \ (po + p1)”

d vy
%(po +p1)7 = (po +p1)7(p0;;p1) -0
(po + p1)*
This can only apply if the numerator is equal to zero. Using the wave nature of p;
; o y—1 dp
—iwp1(po + p1)” = (Po +p1)7(po + p1) o =0

Binomially expanding the density terms up to first order in 571) and using wave nature of p;

_iwpyg (1 ; 72) ~ (5o +p1)rel " (1 F - 1)23) (miwpr) = 0

Retaining only the terms up to first perturbation order
—iwp1pgy — povpy (—iwpr) =0
wpr — wype 2t =0 (31)
Po

Similarly, we can modify the Euler’s equation

(po + p1) (W + (T + 1) - V) (T + m)) = —V(po+p)+ i(v x (By + By)) x (B + By)

O, R . 1 - = -
(,00+,01) 71+(U0'V)1}1 :—Vp1+f(zk><B1) XBO
ot Ho

. . 1 . . . .
po(—iw)vh + po(o - (ik))vh = —ikpy + u—(i(—kBly)i +i(kB1,)7) x (Bo(sin i + cos 6k))
0

ASﬁOZO

. 1 R Ao A
—powth = —kpy + — By (—kBly cos @i X k+ kBy,sinfj x i + kBi, cosfj x k)
Ho

~ 1 N ~ ~
~powi + khpy — By (kBM cosbi + kB, cosf)j — kB, sin 9k) )
0

Hence we have three component equations. In z

1
—powviy — —kByBi, cosf =0 (32)
Ho
Iny
1
—PoWl1y — fk'BoBly cosf =0 (33)
Ho
In 2
1 .
—pPoWU1 2 + kp1 + ;kBoBlm sinf =0 (34)
0

The last equation left to linearize is the induction equation. This is

% =V x (B + ) x (Bo + By))

—iwgl =V x (171 X gg)

Using a vector calculus identity

— —

—iwgl = (V - B}))ﬁl - (V - 171)5() + (B() - V)ﬁl - (’171 . V)BO
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—iwgl = Z(ﬁo . E)ﬁl — Z(E . ﬁl)éo
—wgl — Bg cos0kv; + kvlzgo =0

We therefore have again three component equations. In x

—wBy,; — By cosOkvy, + kvy,Bgsinf = 0 (35)

Iny
—wB1y — Bycosbkvy, =0 (36)

In z
~wBy. =0 (37)

Therefore, we have 8 linearized equations —. These together form a dispersion relation relating to a
8-component vector of perturbations - (p1, p1, B1,71). Generally, we would have to solve for an 8x8 matrix
eigenvectors, but we can simplify the problem by noticing that equations and form a closed set
for By, and vy,. Furthermore, we can also notice that only applies for arbitrary By, when w = 0 - this
means that only a translational mode (no oscillations) is possible for the waves in By, - we can disregard
it as well.

Therefore, we are left with 2 separate dispersion relations, one with 2x2 matrix and other with 5x5 matrix.

5.5 Alfvén Waves

The 2x2 matrix dispersion represents the Alfvén waves in plasmas. The dispersion relation is

Pow %kBO cos 6 U1y ~0
kBg cos 6 w By, )

This is a bit problematic equation as the different components of the vector have different dimensions. We

can correct this by setting the vector to (y/pov1y, %), which leads to

V/Pow \/%kBO cos \/%T)my 0
\/ pl—OkBg cos 6 VHow \/,%

Now, we have the vector component dimensions the same, but the dimensionality of different matrix rows

is again different. This can be corrected by multiplying the second row by factor f# and first row by
0

1
factor T Then, we have

1 w \/pthBO cosf @vly 0
ﬁkBo cos b w Tis
Solving the secular equation
1
w—A kaocosﬁ 0
\/ﬁkBo cos 6 w—A

(=) = k?BE cos? 6

Hopo
A + ! kB 0

=w Cos

v/ Polo 0

Therefore the eigenmodes are given by

1 1
( 212ka00050 \/kaocosé? > ( \/1p>0111y > _0

ﬁk‘Bg cosf :F\/ﬁk‘Bo cosf \/;ToBly

which is satsified by
1

v Ho By =2poviy
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which means that the eigenvectors are

1 (1
“r= s\ 41

which means that the velocity vy, either oscillates together with the oscillations in By, or in exactly opposite
direction. Since the wave propagates in the z direction, Alfvén waves are transverse waves. Since there are
no oscillations in p or p, the waves are also incompressive. The dispersion relation is set by A = 0 and is
k?B2 cos® 6
w?=—0— (38)
HoPo

Again, as B is frozen in plasma, the oscillations in v and B in the same direction make sense. The oscillations
in opposite directions than probably represent the solution for opposite charge of the ions.
The physical reason behind formation of the Alfvén waves is again the magnetic tension force, which tries
to restore any gradients in B back towards By.

The phase speed of Alfvén waves is
w o B cos

ko vV Hopo

and thus v, = c4 cos .

Up:

Usually, we define c4 = \/fT
Alfvén waves are ellastic and non-dispersive for a fixed direction of the propagation/field. However, there
is one particularity of the Alfvén waves - although the phase velocity is in the direction of z, the group
velocity for Alfvén waves is always in the direction of EO - hence these two velocities do not need to coincide.
To illustrate this, imagine several strings in a row. Lets say we have wave packets travelling along these
strings, which are not running in parallel, but along a oblique line with respect to the strings. The phase
speed of each packet is clearly the speed at which it travels down the string. The group velocity of all
packets is the velocity at which the line connecting the packets moves, which is in a different direction than
the packets themselves.

5.5.1 Standing Waves in Earth’s Magnetic Field

Alfvén waves can propagate along the field lines of Earth’s magnetic field in the ionosphere. At the ends of
the ionosphere, the plasma ceases to exist - this is the same as setting boundary conditions for the waves
along these fieldlines that at the ends of ionosphere, the oscillation amplitudes are zero. This means that
standing Alfvén waves can form in the ionosphere, which can be used to derive information about the
ionosphere. This is called the field line resonance, and on Earth, the periods of oscillations are in orders of
seconds up to minutes.

5.6 Magnetoacoustic Waves

The other five equations have dispersion relation

—ﬁkBg cos —pow 0 0 0 By,
—w —kBgcosf kBgsinf 0 0 Vg
%kBO sin 6 0 —pow k 0 V124 =0
0 pok 0 —w D1
0 0 0 w _‘*’7% p1

By using a little bit of dimensional analysis, we can figure out that the vector with the identical dimensions
will be

P1 C
Vv PoV1z,+/Po Ulka\/i o A)

(B 35

Hence the dispersion relation becomes

—ﬁkBg cos 1—\/p>0w 1 0 . 0 0 %
1—w\/;T(.) —WkBo cosf ﬁkBO sin 0 0 0 VPoV1z
WkBo sin 6 0 —/Pow Dok 0 Vpovi: | =0
0 0 J/pok 0 —wde 7
0 0 0 Pow —wyBL e o
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I will make the equations to have dimensions of w. Therefore, we have
1

==k By cos 6 1 w 1 0 . 0 0 %
w \/kao cosf — WkBO sin 6 0 0 JPovia
\/ﬁkBo sin 6 0 —w ’p’—gk 0 \ /pé)lvlz -0
0 0 \/ngcik 0 —w /;{1?%
0 0 0 w —wy Pfgi VPo
Remembering that c4 = \/EJJW and writing the acoustic speed of sound as c¢g = 7;’—2, we can write the
dispersion relation as
Bia
cakcost w 0 . 0 0 \/llTo
w cakcos —cpaksind 0 0 N
caksind 0 \;w %k 0 Voov: | =0
: P
0 0 YAk 0w I
0 0 0 o o—ws P1ch

By swapping some rows (which we are free to do) and multiplying some equations by -1

w cakcosf —caksinf 0 0 B
cakcos@ w 0 0 0 \/,\O%Tiu
_cAkSine 0 w —CTSk 0 \/71) _
v ) /)1()) 1z =0
0 0 0 w —wi% \/%
A 2
0 0 YAk 0 w N
Now, we need to solve the secular equation
w=A cakcos —caksinf 0 0
cakcos@ w—A 0 0 0
0= —caksiné 0 w—A —%k 02 _
0 0 0 w—A —wgfi
0 0 D2k 0 w—A
cs
w—A cakcos —caksiné 0 wk_/\ﬁ CAkCO)\SG 0 0
_ cakcosf w—A 0 0 N cA CO'S w — 0 0 B
=W=N| _ciksing 0 WX =gk [Tog Ak —eaksing 0 —gk 0=
0 0 0 w=—A 0 0 w=XA w3
A
w—A cakcos —cpaksing w—A cakcosf 0
=(w-N?| cakcos w—A 0 +eswk | cakcosf  w—A 0 -
—caksin® 0 w—=A —caksinf 0 —%k
2 _ w=A cakcosf _ . cakcos —cyksin€ _
=(w—A) ((w A) cakcosd  w— A ‘ caksinf o — 0
_2,2] w—A  cakcosf | _
wegk cakcosf® w— A ‘ -

=(w—=A) [(w=A)? ((w=A)? = 4k? cos® ) — (w — N)>ck*sin? 0] — wegk? ((w — N)* — % k* cos?0) =0

It turns out that this is a 5th order equation that is not very easily solved. Therefore, I could not determine

the eigenmodes properly here. However, we can make the dispersion relation alone simpler. We obtain the
dispersion relation by setting A = 0, which transforms the equation above into

w [w? (w? — 4k? cos® 0) — w?chk? sin’ 0] — weik® (w? — 4k cos®0) = 0

We can therefore factor out w to get
w[(w? — &k?) (w? — A k* cos? 0) — w? i k? sin? 6] =0
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We therefore have solution with w = 0 - a static translational solution. Other, more interesting solutions
exist when

(w? — &k?) (W? — Ak* cos® 0) — w?chk?sin® § = 0 (39)

This is the dispersion relation of so called magnetoacoustic waves. We can notice that it is bi-quadratic in
w?, i.e. after multiplying through to get rid of all the brackets, we are left with

wh — (c&k? + Ak (cos® 0 + sin? 0)) w? + gk cos® § = w* — (cBk? + k%) w? + ik cos® 0 = 0

which can be solved as quadratic equation in w?. This leads to

w? = 3 (cfng + A4k £ \/(czskz + % k?)? — 4ck e kA cos? 0)
The minimum value of the expression under the square root occurs when cos? § = 1, and then, the expression
becomes (c%k? — ¢4 k?)?, which is always greater than or equal to zero - hence w? is always real.

The maximum value of the expression under the square root occurs when cos?# = 0. Then, the smaller
root is

. 1/, .
w? = 3 <c§kz + c4k® —\/(cEk? + cik2)2> =0

Hence, w? > 0, and therefore, two real frequencies are defined

wp = \/5\/025 +c4+ \/(czs + %)% — 4% cos? 6 (40)
koo 2 2 4 22 2 2 cog2
wszﬁ CS+CA_\/(CS+CA) — 4c%cg cos? 0 (41)

Here, index F' stands for ”fast”, index S for "slow”. Magnetoacoustic waves are similar to acoustic waves
in the sense that they are compressive, longtitudal and are driven by the pressure gradient forces. However,
in plasma, the pressure gradient forces are modified by the magnetic pressure gradients, which creates more
interesting behaviour.

Fast waves vary in speeds from maximum speed cp = \/c% + ¢ when travelling perpendicularly to the
field (6 = %) to speed zero when c4 when travelling along the field. But, in this case, the fast wave in fact
degenerates to the Alfvén wave, and thus becomes incompressive. For fast wave, the the magnetic field and
mass density oscillate in phase.

In the case when the slow wave propagates along the field with plasma g < 1, the slow wave travels at cg
and degenerates to standard acoustic wave. For the slow wave, the density and magnetic field oscillations
are in anti-phase.

Since we could factor out the k& dependence, both fast and slow wave are ellastic waves for a given direction
of the field. The phase speed is therefore

1 ‘ .
Vp,F/S = ﬁ\/CQS +c4 £ \/(CQS +c%4)? — 4% ¢ cos? 0
The phase speeds of MHD waves and Afvén waves is compared in the polar graph in Fig.

5.7 MHD Instabilities

There exists a number of instabilities in plasma. We only briefly mention few of them. In general, the
approach to find instabilities is to see whether small perturbations to a given state increase exponentially
over time. This usually indicates instability.

The Rayleigh-Taylor instability occurs when a heavier fluid is sitting on top of a lighter fluid in some
potential field. Any perturbation to the surface of the fluid increases exponentially. This can be seen from
the dispersion relation of the surface waves, which goes something like

W = PL—PHk
pL + pm

where g is the acceleration of the fluids due to the potential field. Therefore, if the density of the fluid on
top pg is higher than the density of the fluid on bottom py, w is imaginary and the state is unstable.
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Figure 5: Polar graph of the sqaure of phase speed vg of different waves in plasma - the distance of the
origin determines vg, the angle subtended from the x axes determines 6 - the angle between the direction of

propagation and the external field EO. At the origin, black lines and blue lines should respectively connect.
The blue lines represent the Alfvén waves, black lines represent the slow magnetoacoustic waves and red
lines represent the fast magnetoacoustic waves. The maximum speeds cp, c4 and cg are marked.

Kink and sausage instabilities occur for a jet of plasma. They both correspond to instabilities due to
magnetic tension gradients. Kink instability happens when a localised wavelike bend occurs on otherwise
straight jet of plasma. The amplitude of this bend tends to increase over time. The sausage instability
happens when the radius of the plasma jet decreases. The radius tends to increase without stopping until
the jet is cut in half.

Kelvin-Helmholtz instability occurs when two plasma flows are shear flows next to each other - plasma
tends to mix, i.e. perturbations to shear flow interfaces tend to increase over time.

There are many other instabilities, but these are not discussed here.

6 Summary of EM Wave Properties in Plasma

Name ‘ Dispersion Relation ‘ Polarization
Cold Plasma Without External Field
EP Oscillation W= Wep Linear Longtitudal
EM Waves w® = wZ) + k¢ Transverse Linear
Cold Plasma With External Field, & || By
EP Oscillation W = Wep Linear Longtitudal

LH Waves

Transverse LH Circular

RH Waves and Whistler Waves

w(wee—w)

Transverse RH Circular

Cold Plasma With External Field, k£ L B

Ordinary Waves

p ) 272
w? =wg, + ¢k

Transverse in direction of Field

Extraordinary Waves

=1 (@)
- w?—w?

RH/LH Elliptical, Longt. + Trans.

MHD Waves, k - By = cosf

Alfvén Waves

. B?
w? = =0 k2 cos? 0
Lo po

Transverse linear

Magnetoacoustic Waves

(w? — c2k?)(w? — A k% cos? 0) = w?cA k? sin” 0
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