PX448: Mathematical Methods for Physicists III Summary

2022/2023

Calculus of Variations

By considering a small deviation to some path $f\left(x, y, y^{\prime}\right)$, the integral over which is minimised, the Euler-Lagrange equation can be obtained:

$$
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

This can be simplified in the special cases where f does not explicitly depend on one of the variables. For example, if there is no explicit x dependence, we observe that $\frac{\mathrm{d}}{\mathrm{d} x}\left[f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\right]=\frac{\partial f}{\partial x}=0$ and thus $f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}$ must be constant.

The Euler-Lagrange equations can be generalised to contain multiple independent variables (labelled x_{i}) and multiple dependent variables (labelled y_{j}):

$$
\frac{\partial f}{\partial y_{j}}-\partial_{i}\left(\frac{\partial f}{\partial\left(\partial_{i} y_{j}\right)}\right)=0
$$

To minimise a system with an additional constraint $\int g\left(x, y, y^{\prime}\right) \mathrm{d} x=k$ for constant k, Lagrange multipliers can be used such that $\mathcal{L}=f-\lambda g$. This Lagrangian is now the functional to be minimised and so satisfies the Euler-Lagrange equation:

$$
\frac{\partial \mathcal{L}}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial \mathcal{L}}{\partial y^{\prime}}\right)=0
$$

Complex Differentiation

A single-valued function $f(z)$ is differentiable if its derivative is unique (and so does not depend on how the limit $h \rightarrow 0$ is taken). The function is analytic in domain \mathcal{D} if it is differentiable at every point in $\mathcal{D} ; f(z)$ is analytic at a point z_{0} if it is differentiable on an open disc about z_{0}. Singularities are points within the domain of analyticity at which $f(z)$ is not analytic. For example, $f(z)=1 / z$ is analytic everywhere apart from $z=0$; this point is therefore a singularity.

For an analytic function $f(z)=u(x, y)+i v(x, y)$, we can take the derivative with h being purely real or imaginary as the limit $h \rightarrow 0$ is taken. Comparing the results yields the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

These relate the real and imaginary parts of analytic functions to each other and can be used to verify whether a function is analytic or not. Another consequence of the Cauchy-Riemann equations is that analytic functions must satisfy the Laplace equation $\nabla^{2} f=0$.

The geometric interpretation of analytic functions is that the correspond to conformal maps. This means that the mapping from the z-plane (with $x-y$ axes) to the w-plane (with $u-v$ axes) has a local magnification which is independent of direction and preserves the sense of angles.

Contour Integration

Cauchy's theorem states that if $f(z)$ is analytic within and on a closed contour C, then

$$
\oint_{C} f(z) \mathrm{d} z=0 .
$$

This means that, provided the contour Γ does not pass outside \mathcal{D}, the integral

$$
F(z)=\int_{\Gamma} f(z) \mathrm{d} z
$$

depends only on the end points of Γ. This can be demonstrated by setting $C=\Gamma_{1}-\Gamma_{2}$ where $\Gamma_{1,2}$ are different paths between the same end points. By considering the definition of the derivative of $F(z)$, the integral can be shown to also be an analytic function.

Cauchy's integral formula states that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

where the point $z=z_{0}$ is a singularity. This can be extended to derivatives such that the nth derivative of $f(z)$ evaluated at $z=z_{0}$ is given by

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} \mathrm{~d} z
$$

Liouville's theorem states that any analytic function which is everywhere bounded must be constant. This can be proven using Cauchy's integral formula to consider the difference between two points on a bounded function.

Power Series of Analytic Functions

All analytic functions can be written as power series in powers of $\left(z-z_{0}\right)$ about any $z_{0} \in \mathcal{D}$. This is the Taylor series and is unique. The series is given by

$$
f(z)=\sum_{m=0}^{\infty} \frac{f^{(m)}\left(z_{0}\right)}{m!}\left(z-z_{0}\right)^{m}
$$

which can be found by the binomial expansion of Cauchy's integral formula. Unlike real-valued functions, complex-valued functions are always equal to their Taylor series. The circle of convergence is the largest circle around z_{0} within which $f(z)$ is analytic. If $f\left(z_{0}\right)=0$ and the first nonzero derivative is the p th derivative, then $f(z)$ is said to have a zero of order p at $z=z_{0}$. If $p=1$ it is said to have a simple zero. The Taylor series about $\left(z-z_{0}\right)$ of a function with a zero of order p at z_{0} will begin with a term of order $\left(z-z_{0}\right)^{p}$.

This concept can be extended to cases where functions include singularities. If $f(z)$ is analytic within \mathcal{D} enclosed by C apart from a singularity $z=z_{0}$, then

$$
f(z)=\sum_{m=-\infty}^{\infty} F_{m}\left(z-z_{0}\right)^{m}, \quad \text { where } F_{m}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{m+1}} \mathrm{~d} z
$$

This is called a Laurent series and, as it is unique, does not depend on the method used to find it. If a Laurent series breaks off before $m=-\infty$, i.e. $f(z)=\sum_{m=-N}^{\infty} F_{m}\left(z-z_{0}\right)^{m}$, then $\left(z-z_{0}\right)^{N} f(z)$ must be analytic at (thus have a Taylor expansion about) $z=z_{0}$; the singularity is said to be removable.

If a circle can be drawn around a singularity within which $f(z)$ is analytic, the singularity is said to be isolated. If the Laurent series breaks off at order $N, f(z)$ is said to have a pole of order N at $z=z_{0}$ (and it is called a simple pole if $N=1$). If the singularity is not removable and the Laurent series does not break off (i.e. $N=\infty$), it is said to be an essential singularity. In the case of non-isolated singularities,
around which any finite circle necessarily encloses other singularities, the proof for the Laurent series breaks down and so the series may not exist.

If $f(z)$ does not return to its original value when traced around an arbitrarily small loop surrounding $z=z_{0}$, then z_{0} is a branch point of f. In order to make $f(z)$ single-valued, a branch cut can be made which loops are not allowed to cross. As there will be a discontinuity across the branch cut, $f(z)$ is not analytic on the cut.

Calculus of Residues

The F_{-1} term in a Laurent series is called the residue. This is an important value as it can often be calculated using other methods and then used to solve the integral

$$
\oint_{C} f(z) \mathrm{d} z=2 \pi i F_{-1} .
$$

In the case of the Laurent series expanded around a simple pole $z=a$,

$$
\begin{aligned}
f(z) & =\frac{1}{z-a} g(z), \\
& =\frac{1}{z-a}\left[g(a)+g^{\prime}(a)(z-a)+\frac{g^{\prime \prime}(a)}{2!}(z-a)^{2}+\ldots\right],
\end{aligned}
$$

where $g(z)$ is also analytic and so can be expanded as a Taylor series. This means that the residue is simply $F_{-1}=g(a)$.

The residue theorem states that if $f(z)$ is analytic within and on the closed contour C except at a finite number of isolated singularities z_{i}, then

$$
\oint_{C} f(z) \mathrm{d} z=2 \pi i \sum_{i} F_{-1, i} .
$$

If there is an integral of the form $\int_{-\infty}^{\infty} f(x) \mathrm{d} x$, a semicircular contour can be created in the complex plane. As long as the value of the semicircular integral $\rightarrow 0$ as $R \rightarrow \infty$, the residue theorem can be used to evaluate the integral. Jordan's lemma does not require $f(z)$ to vanish quicker than $1 / z$; it just needs to vanish. Integrals of the form $\int_{0}^{2 \pi} f(\theta) \mathrm{d} \theta$ can be converted into contour integrals around the unit circle and simplified by recognising that

$$
\cos (\theta)=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \sin (\theta)=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

