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Calculus of Variations

By considering a small deviation to some path f(x, y, y′), the integral over which is minimised, the
Euler-Lagrange equation can be obtained:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 .

This can be simplified in the special cases where f does not explicitly depend on one of the variables.
For example, if there is no explicit x dependence, we observe that d

dx

[
f − y′ ∂f∂y′

]
= ∂f

∂x = 0 and thus

f − y′ ∂f∂y′ must be constant.

The Euler-Lagrange equations can be generalised to contain multiple independent variables (labelled xi)
and multiple dependent variables (labelled yj):

∂f

∂yj
− ∂i

(
∂f

∂(∂iyj)

)
= 0 .

To minimise a system with an additional constraint
∫
g(x, y, y′)dx = k for constant k, Lagrange multi-

pliers can be used such that L = f − λg. This Lagrangian is now the functional to be minimised and so
satisfies the Euler-Lagrange equation:

∂L
∂y

− d

dx

(
∂L
∂y′

)
= 0 .

Complex Differentiation

A single-valued function f(z) is differentiable if its derivative is unique (and so does not depend on how
the limit h → 0 is taken). The function is analytic in domain D if it is differentiable at every point in
D; f(z) is analytic at a point z0 if it is differentiable on an open disc about z0. Singularities are points
within the domain of analyticity at which f(z) is not analytic. For example, f(z) = 1/z is analytic
everywhere apart from z = 0; this point is therefore a singularity.

For an analytic function f(z) = u(x, y) + iv(x, y), we can take the derivative with h being purely real or
imaginary as the limit h → 0 is taken. Comparing the results yields the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
;

∂v

∂x
= −∂u

∂y
.

These relate the real and imaginary parts of analytic functions to each other and can be used to verify
whether a function is analytic or not. Another consequence of the Cauchy-Riemann equations is that
analytic functions must satisfy the Laplace equation ∇2f = 0.

The geometric interpretation of analytic functions is that the correspond to conformal maps. This
means that the mapping from the z-plane (with x− y axes) to the w-plane (with u− v axes) has a local
magnification which is independent of direction and preserves the sense of angles.



Contour Integration

Cauchy’s theorem states that if f(z) is analytic within and on a closed contour C, then∮
C

f(z) dz = 0 .

This means that, provided the contour Γ does not pass outside D, the integral

F (z) =

∫
Γ

f(z) dz ,

depends only on the end points of Γ. This can be demonstrated by setting C = Γ1 − Γ2 where Γ1,2 are
different paths between the same end points. By considering the definition of the derivative of F (z), the
integral can be shown to also be an analytic function.

Cauchy’s integral formula states that

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz ,

where the point z = z0 is a singularity. This can be extended to derivatives such that the nth derivative
of f(z) evaluated at z = z0 is given by

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz .

Liouville’s theorem states that any analytic function which is everywhere bounded must be constant.
This can be proven using Cauchy’s integral formula to consider the difference between two points on a
bounded function.

Power Series of Analytic Functions

All analytic functions can be written as power series in powers of (z− z0) about any z0 ∈ D. This is the
Taylor series and is unique. The series is given by

f(z) =

∞∑
m=0

f (m)(z0)

m!
(z − z0)

m ,

which can be found by the binomial expansion of Cauchy’s integral formula. Unlike real-valued functions,
complex-valued functions are always equal to their Taylor series. The circle of convergence is the largest
circle around z0 within which f(z) is analytic. If f(z0) = 0 and the first nonzero derivative is the pth
derivative, then f(z) is said to have a zero of order p at z = z0. If p = 1 it is said to have a simple zero.
The Taylor series about (z− z0) of a function with a zero of order p at z0 will begin with a term of order
(z − z0)

p.

This concept can be extended to cases where functions include singularities. If f(z) is analytic within D
enclosed by C apart from a singularity z = z0, then

f(z) =

∞∑
m=−∞

Fm(z − z0)
m , where Fm =

1

2πi

∮
C

f(z)

(z − z0)m+1
dz .

This is called a Laurent series and, as it is unique, does not depend on the method used to find it. If a
Laurent series breaks off before m = −∞, i.e. f(z) =

∑∞
m=−N Fm(z − z0)

m, then (z− z0)
Nf(z) must be

analytic at (thus have a Taylor expansion about) z = z0; the singularity is said to be removable.

If a circle can be drawn around a singularity within which f(z) is analytic, the singularity is said to be
isolated. If the Laurent series breaks off at order N , f(z) is said to have a pole of order N at z = z0 (and
it is called a simple pole if N = 1). If the singularity is not removable and the Laurent series does not
break off (i.e. N = ∞), it is said to be an essential singularity. In the case of non-isolated singularities,



around which any finite circle necessarily encloses other singularities, the proof for the Laurent series
breaks down and so the series may not exist.

If f(z) does not return to its original value when traced around an arbitrarily small loop surrounding
z = z0, then z0 is a branch point of f . In order to make f(z) single-valued, a branch cut can be made
which loops are not allowed to cross. As there will be a discontinuity across the branch cut, f(z) is not
analytic on the cut.

Calculus of Residues

The F−1 term in a Laurent series is called the residue. This is an important value as it can often be
calculated using other methods and then used to solve the integral∮

C

f(z) dz = 2πiF−1 .

In the case of the Laurent series expanded around a simple pole z = a,

f(z) =
1

z − a
g(z) ,

=
1

z − a

[
g(a) + g′(a)(z − a) +

g′′(a)

2!
(z − a)2 + . . .

]
,

where g(z) is also analytic and so can be expanded as a Taylor series. This means that the residue is
simply F−1 = g(a).

The residue theorem states that if f(z) is analytic within and on the closed contour C except at a finite
number of isolated singularities zi, then∮

C

f(z) dz = 2πi
∑
i

F−1,i .

If there is an integral of the form
∫∞
−∞ f(x) dx, a semicircular contour can be created in the complex

plane. As long as the value of the semicircular integral → 0 as R → ∞, the residue theorem can be used
to evaluate the integral. Jordan’s lemma does not require f(z) to vanish quicker than 1/z; it just needs
to vanish. Integrals of the form

∫ 2π

0
f(θ) dθ can be converted into contour integrals around the unit circle

and simplified by recognising that

cos(θ) =
1

2

(
z +

1

z

)
, sin(θ) =

1

2i

(
z − 1

z

)
.


