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Chapter 1

Fourier Series

1.1 Introduction and Definitions
Definition 1.1.1. A periodic function is one which attains the same values after a
certain interval. given a function f(x), then ∃P such that f(x+ P ) = f(x)

Functions need not be symmetric (in the sense that reflecting the function through
an axis gives the same function) over an interval. For example, f(x) = sin

(
πx
L

)
over

x ∈ [0, 2π] is periodic but not symmetric at x = π.
In contrast, the function f : [−π, π] → R, f(x) = cos(x) is symmetric about x = 0

and periodic.

Definition 1.1.2. Let f : [−L,L] → R be a periodic function. It can be expressed as a
sum of complex functions so that

f(x) =
∞∑

n=−∞

cne
inπx
L (1.1)

where cn ∈ C. This is the complex Fourier series of a function f(x) on the interval
[−L,L].

An alternative expression is derived by substituting the exponential for its complex
trigonometric form:

f(x) =
a0
2

+
∞∑
n=1

an cos(knx) +
∞∑
n=1

bn sin(knx) (1.2)

where kn = nπ
L
, an, bn ∈ R. This is called the Trigonometric Fourier series of the

function

Fourier series consider the study of Fourier approximants, and how they converge.

Definition 1.1.3. Let fN : [−L,L] → R be a periodic function. It can be expressed as
a sum of other functions so that

fN(x) =
N∑
−N

cne
inπx
L (1.3)

These fN are called the Fourier Approximants

7



8 CHAPTER 1. FOURIER SERIES

Definition 1.1.4. The quantities cn are the Fourier coefficients.

Their expression is given as a proposition to be proved below. Finally:

Definition 1.1.5. The nth Fourier mode is

e
inπx
L

It is this complex exponential, related by Euler’s theorem that eix = cos(x)+ i sin(x),
which produces the sinusoidal behaviour we know and expect.

Theorem 1.1.1. Dirichlet Conditions. For a function to be represented completely by a
Fourier series, we must have

• The function must be periodic

• It must be single-valued and continuous, but must have a finite number of disconti-
nuities

• It must only have a finite number of maxima and minima in one period

• The function must be absolutely integrable, i.e.
ˆ ∞

−∞
|f(x)|dx <∞

• At discontinuities, the sum converges to 1
2
[f(x+) + f(x−)]

Proof. Not examinable.

You can intuitively see why these conditions should hold. The function should be
periodic, since we are approximating with periodic functions. The second condition is
equivalent to requiring piecewise continuity with finite numbers of discontinuities. This
is so the series can actually converge to f at each x. For the third condition, if you have
an infinite number of extrema in one period, the series may not converge. For example,
consider the function

f : [−1, 1] → R = f(x) = cos
1

x

which oscillates infinitely as x→ 0 from either side.
The fourth condition can actually be proved

1.2 Fourier Coefficients
Proposition 1.2.1. The Fourier coefficients for a function f : [−L,L] → R are given by

cn =
1

2L

ˆ L

−L

e
−inπx

L f(x)dx (1.4)
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Proof. We integrate the Fourier series over one time period, starting at t = t0 and going
to t = t0 + P where P is the period, as follows:

ˆ
f(x)dx =

ˆ ∞∑
−∞

cne
inπx
L dx

We know that the function f must be absolutely integrable, so using an integral test, the
series must converge absolutely, so the series must converge. Hence, we can use Tonelli’s
theorem and swap the integral and summation:

ˆ
f(x)dx =

∞∑
−∞

ˆ
cne

inπx
L dx

This is a bit weird to do without some complex analysis. It is helpful to see how this
converts to the series form, find a0, an, bn. We know

cos(x) =
eix + e−ix

2
cos(x) =

eix − e−ix

2i

Using this, this transform the equation to:

ˆ
f(x)dx =

∞∑
−∞

ˆ
cne

inπx
L dx

The Proposition also establishes the following lemma:

Lemma 1.2.1. A Fourier mode is defined by eikπx/L. Using the definition of orthogonality
over [−L,L]: ˆ

f(x)g(x) = 0

We see then using f(x) = e
imπx

L , g(x) = e
inπx
L

1

2L

ˆ L

−L

e
imπx

L e
inπx
L dx (1.5)

=
1

2L

ˆ L

−L

e−
imπx

L e
inπx
L dx (1.6)

=
1

2L

ˆ L

−L

e
i(n−m)πx

L dx = 0 (1.7)

(1.8)

whenever m 6= n. Trivially, if m = n, the integral becomes 1.
This is referred to as the orthogonality of Fourier modes.



10 CHAPTER 1. FOURIER SERIES

1.3 Fourier sine and cosine series, and orthogonality
relationships

We can transform between the cosine/sine series form and the exponential form of the
Fourier series using Euler’s theorem, that eix = cos(x) + i sin(x).

Indeed, the Fourier coefficients cn transform as follows:

cn =
1

2L

ˆ L

−L

(
cos
(nπx
L

)
− i sin

(nπx
L

))
f(x)dx =

1

2
(an − ibn)

Corollary 1.3.1. We see a−n = −an and b−n = −bn. This allows us to reduce the lower
limit of the series from −∞ to 1. If f is real, then c−n = cn.

Using Euler’s theorem again, we arrive at

f(x) =
a0
2

+
∞∑
n=1

an sin(knx) +
∞∑
n=1

bn sin(knx), kn =
nπx

L

Corollary 1.3.2. The orthogonality relationships are as follows:

1

L

ˆ L

−L

sin(kmx) sin(knx)dx = δmn (1.9)

1

L

ˆ L

−L

cos(kmx) cos(knx)dx = δmn (1.10)

1

L

ˆ L

−L

sin(kmx) cos(knx)dx = 0 (1.11)

It is helpful to note

• The averages of sin2, cos2 over a period is a half

1.4 Properties of Fourier series

1.4.1 Shift rule
Let f, g be functions with Fourier coefficients cn, dn and suppose g(x) = f(x− x0). Then

dn = e−
inπx0

L cn

1.4.2 Derivatives
Derivatives come under quite a lot of conditions. These conditions are an if and only if
statement:

• f(x) is continuous over [−L,L]

• Endpoints match f(L) = f(−L)

• f ′(x) is piecewise continuous over [−L,L]
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Then ∀x ∈ [−L,L]:

f(x) =
a0
2

+
∞∑
n=1

an cos(knx) + bn sin(knx) (1.12)

=⇒ f ′(x) =
∞∑
n=1

−knan sin(knx) + knbn cos(knx) (1.13)

f(x) =
∞∑

n=−∞

cne
inπx
L (1.14)

=⇒ f ′(x) =
∞∑

n=−∞

inπ

L
cne

inπx
L (1.15)

1.4.3 Integration
Term-by-term is fine if f(x) is piecewise continuous over [−L,L].

ˆ x

−L

f(x′)dx′ =

[
1

2
a0x

′ +
∞∑
n=1

an
kn

sin(knx)−
bn
kn

cos(knx)

]x
−L

(1.16)

=
1

2
a0(x+ L) +

∞∑
n=1

an
kn

sin(knx)−
bn
kn

(cos(knx)− (−1)n) (1.17)

For the complex Fourier series, this evaluates as, under appropriate convergence tests,
ˆ x

−L

∞∑
n=−∞

cne
inπx′

L dx′ =

[
∞∑

n=−∞

cn
L

inπ
e

inπx′
L

]
(1.18)

= −
∞∑

n=−∞

cn
iL

nπ
e

inπ(x+L)
L (1.19)

1.4.4 Discontinuities
Suppose f is discontinuous at x0 but the two one-sided limits limδ→0 f(x0 ± δ) = f±(x0)
both exist and the Fourier series converges away from x0 (i.e, the Fourier series does not
converge to x0). Then at x0 the Fourier series converges to the midpoint of either side
of x0.

For example, consider the function defined by

f(x) =

{
1 0 < x < L

−1− L < x < 0

Then the Fourier series hits the origin, halfway between 1 and -1 as expected.

1.5 Truncated series
Definition 1.5.1. A truncated Fourier series is one where we iterate over a finite number
of times, rather than taking sums over infinities:

fN(x) =
N∑

n=−N

cne
inπx
L ,−L ≤ x ≤ L (1.20)



12 CHAPTER 1. FOURIER SERIES

The goal is now to determine the cn which would be the best fit.

Definition 1.5.2. The cost function is a root-squared deviation defined by

∆ =

ˆ L

−L

[fN(x)− f(x)]2 dx (1.21)

We aim to minimise this function (Calculus of Variations) so we go to find the extrema:

∂∆

∂cm
=

∂

∂cn

ˆ L

−L

[
N∑

n=−N

cne
inπx
L − f(x)

]2
dx

= 2

ˆ L

−L

[
N∑

n=−N

cne
inπx
L − f(x)

]
e

imπx
L dx

=⇒
ˆ L

−L

f(x)e
imπx

L dx =

ˆ L

−L

N∑
n=−N

cne
i(n+m)πx

L dx = 2Lc−m

This is as derived, so the Fourier coefficient for an infinite series is just as good as a
coefficient for a truncated series.

1.5.1 Gibbs Oscillations

In all Fourier series, when approximating infinite sums by finite values of N , there are
deviations from the exact values of f(x) in the vicinity of discontinuities in f(x). This
is quite a general problem and stems from our imprecision in defining the convergence of
our Fourier series.

There are always undershoots and overshoots.

• As N → ∞, the peak width decrease in the order of 1
N

. This can be visualised as
the FS stretching out to match the curve, e.g. FS for a linear function f(x) = x,
or a square wave.

• As N → ∞, the peak height goes to a constant δ ≈ 0.09∆

• Gibbs phenomenon at jump discontinuities will remain even as N → ∞.

1.6 Parseval’s theorem
Theorem 1.6.1. (Parseval’s theorem). Let f, g be functions defined over [−L,L] and
cn, dn be their complex Fourier coefficients. Then

1

2L

ˆ L

−L

g(x)f(x)dx =
∞∑

n=−∞

dncn (1.22)
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Proof. This proceeds via direct substitution and doing some algebra.

1

2L

ˆ L

−L

g(x)f(x)dx =
1

2L

ˆ L

−L

∞∑
n=−∞

dne
−iknxcne

iknxdx

=
∞∑

n=−∞

dncn
1

2L

ˆ L

−L

dx

=
∞∑

n=−∞

dncn

The last line is achieved by noting that the integral of 1 over a symmetric interval evaluates
to the interval itself, which is 2L, so they cancel out.

This leads to some nice corollaries:

Corollary 1.6.1.
1

2L

ˆ L

−L

|f(x)|2dx =
∞∑

n=−∞

|cn|2

Proof. This follows directly from realising that the product of f(x)f(x) = |f(x)|2, and
the Fourier coefficients c∗ncn = |cn|2, and applying Parseval’s theorem.

In trigonometric form, Parseval’s theorem is realised as follows:

f(x)2 =
a20
4

+
∞∑
n=1

a3n cos
2(knx) +

∞∑
n=1

b2n sin
2(knx) +

∑
n

∑
m

...

f(x)2 =
1

2L

ˆ L

−L

a20
4

+
∞∑
n=1

a2ncos
2(knx) +

∞∑
n=1

b2nsin
2(knx)

=
a20
4

+
1

2

∞∑
n=1

a2n + b2n

where we used the fact that averages of sin2 and cos2 is a half.

1.6.1 Riemann-Lebesgue lemma
Lemma 1.6.1. If f ∈ L1(Rn) be integrable, then its Fourier transform vanishes at infinity

More precisely, the Fourier coefficients should vanish

Proof. Begin with the substitution y = x+ L
n
:

cn =
1

2L

ˆ L

−L

e−inπx/Lf(x)dx = − 1

2L

ˆ L+L
n

−L+L
n

e−inπy/Lf(y − L

n
)dy

Shifting the interval [−L + L/n, L + L/n] → [−L,L] keeps this integral the same by
periodicity. Taking an average:

cn + cn
2

=
1

4L

∣∣∣∣ˆ L

−L

e−inπx/L(f(x)− f(x− L

n
))dx

∣∣∣∣ < ˆ L

−L

(f(x)− f(x− L

n
))dx < ε

Since ε is arbitrary, then the |cn| → 0 as we go to infinity (Analysis).
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1.6.2 Orthogonal basis
The orthogonality of Fourier modes can be viewed as exactly analogous to that for the
Cartesian basis vectors, namely ei · ej = δij, in a finite-dimensional vector space.

The Fourier modes serve as an orthogonal basis for the infinite-dimensional vector
space of square-integrable periodic functions, L2([−L,L]) (This is L-squared space, a
Hilbert space with the 2-norm). The Fourier coefficients of any function are the compo-
nents of the vector in the Fourier basis.

1.6.3 Average of a function
Definition 1.6.1.

¯h(x) = 〈h(x)〉 = 1

2L

ˆ L

−L

h(x)dx (1.23)

1.7 Fourier in multiple dimensions
We extend everything into vectors over any vector space of dimension n. Let x =
(x1, . . . xn)

f(x) =
∑
k

cke
ik·x ck =

1

(2L)3

ˆ
[−L,L]3

e−ik·xf(x)d3x



Chapter 2

Fourier Transforms

Definition 2.0.1. The wavevector, denoted kn = nπ
L

We want to keep the spacing uniform., and this spacing is δk = π
L

=⇒ 1 = L
π
δk.

Then we see that the sum over the n Fourier modes is really just a sum over wavevectors

f(x) =
∑
kn

L

π
δkcne

iknx =
1

2π

∑
kn

2cnLe
iknxδk

Obviously, we simply move from an integer index n to a real, but still discrete index
kn. As δk → 0, we start obtaining the structure of a Riemann integral.

Looking at the expression for the Fourier coefficients:

cn =
1

2L

ˆ L

−L

e−inπx/L =⇒ Lcn
π

=
1

2π

ˆ L

−L

e0iknx

This leads us to the key definition

Definition 2.0.2. The Fourier transform (and its inverse) of a function x is defined
by

f̃(k) =
1√
2π

ˆ ∞

−∞
e−ikxf(x)dx f(x) =

1√
2π

ˆ ∞

−∞
eikxf̃(k)dk (2.1)

It is important to note that the definition above is the symmetrical Fourier trans-
form. There are other conventions (see notes, cba). I will denote the forward Fourier
transform and inverse Fourier transform of functions f(x), f̃(k) by F[f(x)],F−1[f̃(x)]

15
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2.1 Examples, Lorentzians and Gaussians

Example 1.
The exponentially decaying function

f(x) = e−
|x|
ξ

has a Fourier transform

f̃(k) =

ˆ ∞

−∞
e−ikxf(x)dx =

ˆ 0

−∞
e−ikxex/ξdx+

ˆ ∞

0

e−ikxe−x/ξdx

=
e−ikx+x/ξ

−ik + 1/ξ

∣∣∣∣0
−∞

+
e−ikx−x/ξ

−ik − 1/ξ

∣∣∣∣∞
0

=
2ξ−1

k2 + ξ−2

This is called a Lorentzian lineshape

Lemma 2.1.1. The Fourier transform of a Gaussian is a Gaussian

2.2 Properties of Fourier Transforms

Lemma 2.2.1. The Fourier transformed function f̃(−k) = f̃(k)

Proof.

f̃(−k) =
ˆ ∞

−∞
e−ikxf(x)dx =

ˆ ∞

−∞
eikxf(x)dx = f̃(x)

Lemma 2.2.2. Let f, g be functions satisfying the Dirichlet conditions so that the Fourier-
transformed functions f̃ , g̃ exist. Suppose that g(x) = f(x− x0). Then g̃(k) = e−ikx0 f̃(k)

Proof.

g̃(k) =

ˆ ∞

−∞
e−ikxg(x)dx =

ˆ ∞

−∞
e−ikxf(x− x0)dx =

ˆ ∞

−∞
e−ik(y+x0)f(y)dy = e−ikx0 f̃(k)

Lemma 2.2.3. If F(f(t)) = f̃(k) then F(f (n)(t) = (ik)nf̃(k)

Proof.

dnf(x)

dkn
=

1√
2π

dn

dkn

ˆ ∞

−∞
eikxf̃(k)dk

=
1√
2π

(ik)n
ˆ ∞

−∞
eikxf̃(k) = (ik)nf̃(k)

=⇒ F(f (n)(t) = (ik)nf̃(k)
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However there are conditions attached to derivatives which must all be satisfied:

• f (n)(t) must be piecewise continuous

•
´∞
−∞ f (n−1)(t)dt must converge and be finite

• limt→±∞ f (m)(t) = 0∀m ∈ {1, . . . , n}

Lemma 2.2.4. Suppose F(f(x)) = f̃(ω). Then F[tf(t)] = i df̃
dω

Proof.

df̃

dω
=

1√
2π

d

dω

ˆ ∞

−∞
e−iωtf(t)dt

=
1√
2π

(−it)
ˆ ∞

−∞
e−iωtf(t)dt

=⇒ i
df̃

dω
= F[tf(t)]

These properties are very useful since they turn hard to compute operations into simple
ones, i.e. differentiation becomes multiplication!

2.2.1 Damped oscillations
Consider the function f(t) = Ae−|γ|t cos(ω0t).

Expanding this with complex exponentials we get

f(t) =
A

2

(
e−|γ|teiω0t + e−|γ|te−iω0t

)
F[e−|γ|t] =

1√
2π

2γ

γ2 + ω2

=⇒ F[f(t)] =
A

2

1√
2π

(
2γ

γ2 + (ω − ω0)2
+

2γ

γ2 + (ω + ω0)2

)
This means we get 2 Lorentzians at ω = ±ω0.

2.2.2 Application to spectroscopy
In spectroscopy experiments, waves of various frequencies ω and typically give information
about the Fourier transform of some signal f(t).

• Spectroscopic lines are often Lorentzians

• Line precision (how close the lines are together) tells us information about the
frequencies involved

• Line width tells us information about the damping parameter γ

• However with line width, various dynamical factors can affect it. The environment
is often out of our control. Specific atoms/molecules we desire may be in a mixture
with other compounds.
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• The more lines that appear, the more dynamical factors that are (potentially)
affecting the system

• Twice broadening may occur. This is due to the Heisenberg Uncertainty Principle

2.3 Parseval’s Theorem and FT identities

2.3.1 Parseval’s Theorem
Previously, Parseval’s theorem was stated for Fourier series. We now evolve this into the
transform.

Theorem 2.3.1. (Parseval’s theorem). The inner product of 2 functions in function space
is proportional to the inner product of their Fourier transforms. More mathematically,
let f, g be functions satisfying the Dirichlet conditions, so their Fourier transforms f̃ , g̃
exist and are well-defined. Then

ˆ ∞

−∞
g(x)f(x)dx =

1

2π

ˆ [

−∞
∞]g̃(k)f̃(k)dk

Proof. This is direct calculation:

ˆ ∞

−∞
g(x)f(x)dx =

ˆ ∞

−∞

[
1

2π

ˆ ∞

−∞
eikxg̃(k)dk

]
f(x)dx

=
1

2π

ˆ ∞

−∞
g̃(k)

[ˆ ∞

−∞
e−ikxf̃(x)dx

]
dk

=
1

2π

ˆ [

−∞
∞]g̃(k)f̃(k)dk

Sometimes Parseval’s theorem for FT is known as Plancherel’s theorem. A more
familiar form of this theorem is when f = g

ˆ ∞

−∞
|f(x)|2dx =

1

2π

ˆ ∞

−∞
|f̃(k)|2dk

2.3.2 Riemann-Lebesgue lemma
We work a lot with trigonometric functions and must study their convergence (or lack
of) under various operations, including Fourier transforms. In the Fourier transform, we
consider x = 0:

f(0) =
1

2π

ˆ ∞

−∞
f̃(k)dk

By absolute convergence of Riemann integrals (Analysis 3), this will converge if the
integral of the absolute value of f̃ does. This is known as the Riemann-Lebesgue lemma.
We prove via substituting in y = x+ π

k
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Proof.

f̃(k) =

ˆ ∞

−∞
e−ikxf(x)dx =

ˆ ∞

−∞
e−ik(y−π/k)f(y − π/k)dy = −

ˆ ∞

−∞
e−ikyf(y − π/k)dy∣∣∣∣∣ f̃(k) + f̃(k)

2

∣∣∣∣∣ =
∣∣∣∣12
ˆ ∞

−∞
e−ikx(f(x)− f(x− π/k))dx

∣∣∣∣ ≤ 1

2

ˆ ∞

−∞
|f(x)− f(x− π/k)| dx

where the last step is justified by theorem from Analysis 3.

So then the Fourier transform absolutely converges as k → ±∞.

2.4 Convolutions
Definition 2.4.1. The convolution between 2 functions f, g is the function f ?g defined
by

(f ? g)(x) =

ˆ ∞

−∞
f(x− y)g(y)dy (2.2)

Proposition 2.4.1. The convolution is symmetric, i.e. f ? g = g ? f

Proof.

(f ? g)(x) =

ˆ ∞

−∞
f(x− y)g(y)dy =

ˆ −∞

∞
f(t)g(x− t)(−dt) =

ˆ ∞

−∞
g(x− t)f(t)dt = g ? f

Proposition 2.4.2. (Convolution theorem). The convolution is the inverse Fourier
transform of a product

Proof.

(f ? g)(x) =

ˆ ∞

−∞
f(x− y)g(y)dy =

1

2π

ˆ ∞

−∞

ˆ ∞

−∞
eik(x−y)f̃(k)g(y)dkdy

=
1

2π

ˆ ∞

−∞
eikxf̃(k)

(ˆ ∞

−∞
e−ikyg(y)dy

)
dk

=
1

2π

ˆ ∞

−∞
eikxf̃(k)g̃(k)dk = F−1[

√
2πf̃(k)g̃(k)]

Proposition 2.4.3. The Inverse Convolution theorem: the Fourier transform of a product
of two functions F[f(x)g(x)] is proportional to the convolution

f̃(kx) ? g̃(k) =

ˆ ∞

−∞
f̃(k − k′)g̃(k′)dk′

Proof. There are 2 ways to do this. One is by evaluating F−1[f̃ ? g̃], and the other is by
brute force substitution.
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Method one: evaluating the inverse

F−1[f̃ ? g̃] =
1√
2π

ˆ ∞

−∞
eikx

(ˆ ∞

−∞
f̃(k − k′)g̃(k′)dk′

)
dk

=
1√
2π

ˆ ∞

−∞
eikx

(ˆ ∞

−∞
f̃(k − k′)g̃(k′)dk′

)
dk =

1√
2π

ˆ ∞

−∞
eik

′xg̃(k′)

(ˆ ∞

−∞
ei(k−k′)xf̃(k − k′)dk

)
dk′

ˆ ∞

−∞
eik

′xg̃(k′)

(ˆ ∞

−∞
ei(k

′′)xf̃(k′′)dk′′
)
dk′

=

√
2π

2π

ˆ ∞

−∞
eik

′xg̃(k′)f(x)dk′

=
√
2πf(x)g(x)

=⇒ f̃ ? g̃ = F[
√
2πf(x)g(x)]



Chapter 3

Dirac Delta Function

3.1 Elementary Properties of the Dirac Delta Func-
tion

Definition 3.1.1. The Dirac delta function (distribution), denoted δ(x) is a function
localised at x = 0, which when integrated with a function, simply evaluates it at that
point

Indeed we can see this with the Fourier transform:

f̃(k) =
1√
2π

ˆ ∞

−∞
e−ikx′

f(x′)dx′

=⇒ f(x) =
1√
2π

ˆ ∞

−∞
eikx

1√
2π

ˆ ∞

−∞
e−ikx′

f(x′)dx′dk

=

ˆ ∞

−∞

(
1

2π

ˆ ∞

−∞
eik(x−x′)dk

)
f(x′)dx′

=⇒ f(x) =

ˆ ∞

−∞
δ(x− x′)f(x′)dx′

=⇒ δ(x− x′) =
1

2π

ˆ ∞

−∞
eik(x−x′)dk

So we can see the integral of a delta function with a function at a point x = x′, evaluates
the function at x′.

Dirac Delta function

δ(x) =
1

2π

ˆ ∞

−∞
eik(x)dk (3.1)

δ(x− x′) =
1

2π

ˆ ∞

−∞
eik(x−x′)dk (3.2)

Lemma 3.1.1. δ(x) is an even function, i.e. δ(−x) = δ(x)

21
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Proof.

δ(−(x− x0)) = δ(x0 − x) =
1

2π

ˆ ∞

−∞
eik(x0−x)dk =

1

2π

ˆ ∞

−∞
e−ik(x−x0)dk

= − 1

2π

ˆ −∞

∞
e−ik(x−x0)dk =

1

2π

ˆ −∞

∞
eik(x0−x)(−dk)

=
1

2π

ˆ ∞

−∞
eik(x−x0)dk = δ(x− x0)

The Dirac delta function also operates over finite intervals, namely
ˆ b

a

f(x)δ(x− x0)dx =

{
f(x0) x0 ∈ (a, b)

0 otherwise
(3.3)

Definition 3.1.2. Dirac delta function as a limit.

δ(x) = lim
Q→∞

δQ(x) = lim
Q→∞

ˆ Q

−Q

eikxdk

= lim
Q→∞

1

2π

[
eikx

ix

]Q
−Q

=
1

πx

(
eiQx − e−iQx

2i

)
=

sin(Qx)

πx

• As Q→ ∞, δQ(x) becomes narrower and higher (larger amplitude)

• δ(x) is infinite high and infinitesimally wide.

• The width and height of δ(x) are inversely proportional to each other. Namely, the
height of δQ(x) is Q/π (measured from the x-axis), but its width (measured from
the y-axis, so this is more of a half-width) is π/Q

• limQ→∞ δQ(x− x0) =
´ Q
−Q

δ(x− x0)f(x)dk = limx→x0 f(x) = f(x0)

• This means we can say:
´∞
−∞ δ(x− x′)f(x)dk = f(x)

•
´∞
−∞ δ(x)dx = 1

3.2 Convolutions
Lemma 3.2.1. Let f be a function and g(x) = δ(x− x0). Then

f ? g(x) =

ˆ ∞

−∞
f(x− y)δ(y − x0)dy = f(x− x0) (3.4)

Proof. This follows directly from the definition of the delta function. Namely, the delta
function is non-zero ⇐⇒ y = x0 ∈ (−∞,∞) which means we return f(x− x0) directly.

This actually generalises to any sum of delta functions, g(x) =
∑

i δ(y − xi)
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3.3 Shifting
Related to convolutions, we can shift in the integration bounds to get a function out,
namely:

ˆ b

a

δ(x− x0)f(x) =

ˆ b−x0

a−x0

δ(x′)f(x′ + x0)dx
′ =

{
f(x0) a− x0 < 0 < b− x0

0 otherwise

3.4 Dirac comb
Definition 3.4.1. The Dirac comb is the infinite set of regularly spaced delta functions
localised at the points xn = nP∀n ∈ Z:

g(x) =
∞∑

n=−∞

δ(x− nP )

One use is we can create a periodic pattern by copying some feature (e.g., peaks in a
signal) represented by the function at f at points of the comb. To do this, we convolve:
f ? g:
Lemma 3.4.1. Show that the Fourier transform h̃(k) = F[f ? g] consists of a set of delta
functions of the same spacing as before, but with strengths given by f̃(kn)
Proposition 3.4.1. The Fourier transform of a Dirac comb is a Fourier series:
Proof. Define

g(x) =
∞∑

n=−∞

δ(x− nP )

=⇒ g̃(k) =

ˆ ∞

−∞

(
∞∑

n=−∞

δ(x− nP )

)
dx =

∞∑
n=−∞

ˆ ∞

−∞
e−ikxδ(x− nP )dx =

∞∑
n=−∞

e−iknP

• This is a Fourier series of a function of k

• This has period 2L = 2π
P

• Fourier coefficients cn = 1∀n
Corollary 3.4.1. The original function g(x) can be written as

g(x) =
∞∑

n=−∞

1

P
e

2inπx
P

This leads to
∞∑

n=−∞

δ(x− nP ) =
1

P

∞∑
n=−∞

e2inπx/P

Corollary 3.4.2. We Fourier transform the Dirac comb, and we get

g̃(k) =
∞∑

n=−∞

e−iknP =
2π

P

∞∑
n=−∞

δ(k − 2nπ

P
)

In other words, the Fourier transform of a Dirac comb is another Dirac comb. This result
manifests itself in the appearance of (crystal) diffraction patterns.
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3.5 Delta function with function argument
When the argument of the delta function is itself a function, δ(f(x)), it behaves like a
sum of (ordinary) delta functions localised at each of the roots of the function f. This
allows us to derive properties such as scaling.

Dirac delta of a function

Theorem 3.5.1. Let f : Ur → R, f ∈ C1(R) be a one-time differentiable function
with continuous derivative, such that f(xr) = 0∀r ∈ N, f ′(xr) 6= 0∀r. Ur is an open
set containing the root xr and nothing else. Let g(x) be a function at least defined
on the xr. Let f, g both be integrable. Also require:⋃

r

Ur ⊂ [a, b]; a, b ∈ R

Then f, g satisfy ˆ b

a

g(x)δ(f(x))dx =
∑

roots,i

g(xi)

|f ′(xi)|

where the xi ∈ (a, b)∀i

Proof. On each Ur the map f is restricted to a bijection f |Ur between Ur and an open
set V centred on the origin, so that by the change of variables y = f(x), with inverse
x = φ(y), we getˆ

Ur

g(x)δ(f(x))dx =

ˆ
V

g(φ(y))δ(y)
1

|f ′(φ(y))|
dy =

g(φ(0))

|f ′(φ(9))|
=

g(xr)

|f ′(xr)|

Corollary 3.5.1. Scaling of a delta function.

δ(af(x)) =
1

|a|
δ(x)

Proof. Indeed, we set f(x) → yf(x) above. This yields us:ˆ n

a

δ(yx)g(x) =
b/y

a/y
δ(x′)g(x′/y)dx′ =

f(0)

|a|

3.6 Heaviside Step Function
Definition 3.6.1. The Heaviside Step Function is defined as

H(x) =

{
0 x < 0

1 x ≥ 0

Lemma 3.6.1. The Dirac delta is the derivative of the Heaviside step function. Similarly,
the Heaviside step function is the antiderivative of the Dirac delta:

δ(x) =
dH(x)

dx

ˆ b

a

δ(x)dx = H(b)−H(a)
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3.7 Applications of Fourier Transforms and Delta func-
tion

3.7.1 Convolution of Lorentzians
Recall the Lorentzians:

f̃(ω) ∝ 1

γ2 + ω2
⇐⇒ f(t) ∝ e−γ|t| F̃ (ω) ∝ 1

Γ2 + (ω − Ω)2
⇐⇒ F (t) ∝ e−Γ|t|eiΩt

We will convolve the signal F̃ (ω) with the resolution function f̃(ω). Using the convolution
theorem, we will Fourier transform the product of the functions F (t)f(t):

(F̃ ? f̃)(ω) ∝ F[F (t)f(t)] ∝ F[e−Γ|t|eiΩte−γ|t|] ∝ 1

(γ + Γ)2 + (ω − Ω)2

As a result, the signal is broadened. The widths Γ, γ → Γ + γ
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Chapter 4

Fourier Analysis in Multiple
Dimensions

We now aim to generalise everything we have done previously to n dimensions. Space
is three-dimensional, so n = 3, or n = 2 as will be considered in a later chapter on
diffraction. We work on the vector space Rn with a vector x = (x1, . . . , xn) ∈ Rn and the
wavevector k = (k1, . . . , kn).

4.1 Conventions and Fourier Transform
Depending on what resource you use, people will use different factors of 2π outside the
integrals. We will be using the symmetric convention:

Definition 4.1.1. The (symmetric) spatial Fourier transform in n-dimensions is

f̃(k) =
1

(2π)n/2

ˆ
Rn

e−ik·xf̃(x)dnx f(x) =
1

(2π)n/2

ˆ
Rn

eik·xf̃(k)dnk (4.1)

We can also transform in time and space, so time t↔ ω, the (angular) frequency. So
if we do both, the convention is

Complete Fourier Transform

Definition 4.1.2. Th complete Fourier transform of f(x, t) in n spatial dimen-
sions and 1 time dimension is

f̃(k, ω) =

ˆ ∞

∞

ˆ
Rn

e−i(k·x−ωt)f(x)dnxdt (4.2)

f(x, t) =
1

(2π)n+1

ˆ ∞

−∞

ˆ
Rn

ei(k·x−ωt)f̃(k, ω)dnkdω (4.3)

with the motivation being that the standard expression for a plane wave is exp(i(k ·
xωt)) rather than exp(i(k · x+ ωt)).

4.2 Convolutions in 3D
Convolutions work exactly the same way.

27
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Definition 4.2.1. The convolution of 2 functions f, g : Rn → R is f ∗ g(x) defined by

f ∗ g(x) =
ˆ
Rn

f(x− y)g(y)dny (4.4)

In particular,

Theorem 4.2.1. The convolution theorem (and its inverse) still hold, namely:

F[f ∗ g](k) = f̃(k)g̃(k) (4.5)

Proof. Follow the proof as in for 1 dimension. It is identical in that regard.

4.3 Delta functions
Definition 4.3.1. The 3D Dirac delta function is

δ(x− y) = δ (x1 − y1) δ (x2 − y2) · · · δ (xn − yn) =
n∏

i=1

δ (xi − yi) (4.6)

If this definition isn’t clear to you, remember the point of a Dirac delta is to select
points which are equal to each other. 2 vectors x,y are the same if xi = yi∀i. Therefore
their Dirac delta is the same as testing if the Dirac delta of each component is 1.

Given that, the following property still holds, which is analogous to the version in 1D:

Lemma 4.3.1. ˆ
Rn

f(x)δ(x− y)dnx = f(y) (4.7)

and it still has a relationship to the Fourier transform, namely now we are in n-
dimensions

Lemma 4.3.2.
δ(x− y) =

1

(2π)n

ˆ
Rn

eik·(x−y)dnk (4.8)

4.4 Parseval’s theorem
It is the exact same thing

Theorem 4.4.1. Parseval’s theorem in n-dimensions
ˆ
Rn

g(x)f(x)dnx =
1

(2π)n

ˆ
Rn

g̃(k)f̃(k)dnk. (4.9)

and from this, you get the corollary if f = g

Corollary 4.4.1. ˆ
Rn

|f(x)|2dnx =
1

(2π)n

ˆ
Rn

|f̃(k)|2dnk (4.10)
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4.5 Derivatives
Definition 4.5.1. Gradient of a function f : Rn → R is an operator ∇ such that

∇f = e1
∂f

∂x1
+ e2

∂f

∂x2
+ · · ·+ en

∂f

∂xn
, (4.11)

where ei are the normal basis vectors of Rn. In different geometries such as spherical or
cylindrical, the form will be more complicated.

Then the Fourier transform of the gradient satisfies:
Theorem 4.5.1. The Fourier transform of a gradient of a function is

F[∇f ](k) = ikf̃(k) (4.12)

and this exists provided f vanishes at infinity, namely f → 0 as |x| → ∞ so the integrals
in Definition 4.1.1 converge.
Proof. Use the fact integrals are linear operators:

F[∇f ](k) =
ˆ
Rn

e−ik·x
(
e1
∂f

∂x1
+ e2

∂f

∂x2
+ · · ·+ en

∂f

∂xn

)
dnx,

= e1

ˆ
Rn

e−ik·x ∂f

∂x1
dnx+ e2

ˆ
Rn

e−ik·x ∂f

∂x2
dnx+ · · ·+ en

ˆ
Rn

e−ik·x ∂f

∂xn
dnx,

= e1ik1f̃(k) + e2ik2f̃(k) + · · ·+ eniknf̃(k),

= ikf̃(k).

In general, taking a derivative will add on a prefactor of ik to f̃(k) for every derivative
taken. Observe that every even derivative is the divergence of another gradient, so ∇2f =
∇ · ∇f . However every odd derivative is a gradient, so ∇3f = ∇(∇ · ∇f) and so

F[∇2n−1f ](k) = i2n−1k2n−2kf̃(k) F[∇2nf ](k) = (ik)2nkf̃(k) (4.13)

where k = |k|.

4.5.1 Time and temporal FT
Note that the spatial FT of a time derivative, leaves the time derivative unchanged:

F

[
∂f(x, t)

∂t

]
=
∂f̃(k, t)

∂t
(4.14)

if we take the time FT of a time derivative we get

F

[
∂f(x, t)

∂t

]
= −iωf̃(x, ω) (4.15)

But instead if we also take the spatial and time FT (yes the notation is a bit poor here)

F

[
∂f(x, t)

∂t

]
= ωkf̃(k, ω) (4.16)

Note both space and time each produce a factor of i which multiply to give i2 = −1
hence the minus sign. However we are also taking the convention of the exponential
being exp[i(k · x− ωt)] so we have a 3rd minus sign which cancels it out.



30 CHAPTER 4. FOURIER ANALYSIS IN MULTIPLE DIMENSIONS

4.6 Using FT to solve PDEs
This is one of the most important uses for Fourier transforms, Taking FT’s using the
statements above can simplify PDEs to a huge extent. Of course the real solutions will
depend on whether the functions are integrable in the first place.

4.6.1 Wave equation
The wave equation in 3D is

1

c2
∂2u

∂t2
= ∇2u (4.17)

and suppose we have an initial value problem u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x).

Taking FTs of both sides in space gives

1

c2
∂2ũ

∂t2
= −k2ũ, ⇒ ũ(k, t) = f̃(k)e−ikct + g̃(k)eikct. (4.18)

We must also FT the initial values so ũ(k, 0) = ũ0(k),
∂ũ

∂t
(k, 0) = ṽ0(k).

We get the Fourier-transformed solution as

ũ(k, t) =
1

2

[
e−ikct + eikct

]
ũ0(k) +

1

2cik

[
eikct − e−ikct

]
ṽ0(k). (4.19)

It is now time to inverse Fourier transform this. We suppose that all the integrals converge
so we are solving

u(x, t) =
1

(2π)3/2

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
ei(k·x−ωt)ũ(k, t)dk1dk2dk3 (4.20)

The integrand becomes

1

2
[exp (i(k · x− t(ω − kc))) + exp (−i(k · x− t(ω − kc)))] ũ0(k) (4.21)

+
1

2ick
[exp (i(k · x− t(ω − kc)))− exp (−i(k · x− t(ω − kc)))] ṽ0(k)

We set ω1(k) := ω − kc and use the formulae that

cos(mx) =
eimx + e−imx

2
sin(mx) =

eimx − e−imx

2i
(4.22)

we get the integrand as

cos(k · x− ω1(k)t)ũ0(k) +
1

ck
sin(k · x− ω1(k)t)ṽ0(k) (4.23)

We do not know what ṽ0, ũ0 are but let’s assume we can also inverse FT them back.
Doing this, will get you the solution.
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4.6.2 Diffusion Equation
MathsPhys students will meet this again in PX449 Kinetic Theory in 3rd year if on the
4 year course.

In 3D, the diffusion equation is

∂u

∂t
−D∇2u = f(x, t)

where f(x, t) acts as a ’source’ for the ’solute’ u. There are 2 ways we can solve this,
with either spatial or time FT.

Spatial FT : Taking the spatial Fourier transform we find

∂ũ

∂t
+Dk2ũ = f̃(k, t)

This is a one-dimensional ordinary differential equation in t and you can apply ODE
methods you have learnt previously to do so.

The other method (and the one you’ll encounter in later Physics courses) is instead
taking a

Complete FT to get(
−iω +Dk2

)
ũ(k, ω) = f̃(k, ω) ⇒ ũ(k, ω) =

1

−iω +Dk2
f̃(k, ω) := G̃(k, ω)f̃(k, ω)

(4.24)
Taking the inverse FT by the convolution theorem is

u(x, t) =

ˆ ∞

−∞

ˆ
Rn

G(x− y, t− s)f(y, s)dnyds (4.25)

where G is the Green function for the PDE, where Green functions are the response of
the differential equation to a delta function source in time and space: f(x, t) = δ(x)δ(t).

We can usually find Green functions explicitly, first by inverting the temporal FT:

G̃(k, ω) =
1

−iω +Dk2
, ⇒ G̃(k, t) =

{
e−Dk2t t > 0,

0 t < 0.
(4.26)

Then invert the spatial FT

G(x, t) =
1

(2π)n

ˆ
Rn

eik·x−Dk2tdnk =
1

(2π)n/2(2Dt)n/2
e−

|x|2
4Dt , (4.27)

which is valid for t > 0.
Remark. The Green function method is applied here to the diffusion equation, but applies
generally to linear PDEs in Rn with constant coefficients.
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Chapter 5

Wave optics

5.1 Waves and the 1D Wave Equation
The 1D wave equation is a second-order, autonomous, homogeneous partial differential
equation

∂2ψ

∂x2
=

1

v2
∂2ψ

∂t2

Possible solutions ψ(x, t) include:

Aei(kx−ωt+ϕ) A sin(kx− ωt+ ϕ) A cos(kx− ωt+ ϕ)

Definition 5.1.1. The wavelength is the distance one cycle of a wave takes in space.
It is denoted λ

Definition 5.1.2. The wavenumber is defined as k = 2π
λ

. This can be intuitively
thought of as the number of wave cycles in 1 meter of space

Definition 5.1.3. The phase velocity is ω
k

The initial phase is ϕ

Definition 5.1.4. A wave is monochromatic if it only has a single frequency ω = ck

Lemma 5.1.1. The Principle of Superposition. If ψ1(x, t).ψ2(x, t) are (linearly indepen-
dent) solutions, then the solution ψ(x, t) = ψ1(x, t) + ψ2(x, t) is also a solution to the
wave equation

Physically, the addition of the 2 waves could represent the superposition of the 2
waves at a point, where the waves come from different sources.

Definition 5.1.5. A wave with a non-zero phase velocity, i.e. not stationary, are called
travelling waves

v =
x′ − x

t′ − t

where (x′, t′), (x, t) are different points of the wave cycle

Definition 5.1.6. Points of constant phase are called wavefronts.

33
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5.2 3D wave equation
Some definitions must be modified a bit.

Definition 5.2.1. The wavevector is defined as |k| = 2π
λ

. This can be intuitively
thought of as the number of wave cycles in 1 meter of space

Definition 5.2.2. A wave is monochromatic if it only has a single frequency ω = c ·k

Our wave equation and solution now generalises to

∇2 =
1

v2
∂2ψ

∂t2
ψ(r, t) = Aei(k·r−ωt+ϕ)

• The phase of the wave is now given by k · x− ωt+ ϕ

• At any time t, ψ(r, t) is the same at all points where k · r is a constant

• Wavefronts are now surfaces of equal phase

• The wavevector points normal to the surface

5.3 Spherical Waves
If we have spherically symmetric waves ψ(r, t) = ψ(r, t) then the Laplacian takes the
form

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+ . . . =

1

r

∂2

∂r2
(rψ) + . . . (5.1)

where the azimuth φ and polar θ terms are dropped because the wave radiates out equally
in all directions.

• The wavefronts are now spherically symmetric surfaces defined by kr being constant

5.4 Electromagnetic Waves
We will now look at electromagnetic properties and things they that do (diffraction and
interference for now). The next chapter will then be entirely dedicated to Fraunhofer
diffraction and a have more rigorous treatment of this property of light (and waves in
general).

5.4.1 Maxwell’s equations

∇2E =
1

c2
∂2E

∂t2
∇2B =

1

c2
∂2B

∂t2

These are Maxwell’s equations for the propagation of light in vacuum. These are simply
vector form of the wave equation. Important properties include

• They are transverse waves, meaning their direction of oscillation is perpendicular
to the propagation direction. Mathematically, the vector fields E,B satisfy E×B ∝
k where k points in the direction of propagation.
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• The vector fields E ⊥ B

• The energy density/intensity/irradiance ∝ |E|2, |B|2 or ∝ c|E|2

• We focus on electric field due to stronger matter coupling

• For a spherical wave, the amplitude varies as ∝ 1
r
, so the intensity varies as ∝ 1

r2
.

This is the inverse square law

• The rate of energy flow through a spherical surface around a source is independent
of the sphere radius (Gauss’s Law)

From now on, we consider the electromagnetic waves being monochromatic and having
the same direction of propagation. This allows us to reduce our problem to the scalar
wave equation for convenience.

5.4.2 Interference
Suppose we have this scenario:

• 2 point sources, placed vertically above each other (they lie in the same plane)
sending out spherically symmetric, monochromatic waves at fixed initial phases
ϕ1, ϕ2. They have position vectors r1, r2 respectively

• The waves have the same frequency ω, =⇒ k = |k1| = |k2| = ω
c

• The waves have amplitudes E1, E2

• Assume electric field vectors are parallel to each other, so we can use the scalar
field approach

• An observer is at position vector R away. Then the distances from each source are
|R− r1|, |R− r2| respectively.

Then:

E1(R, t) =
E1

|R− r1|
cos(k · (R− r1)− ωt+ ϕ1) E2(R, t) =

E2

|R− r2|
cos(k · (R− r2)− ωt+ ϕ2)

Definition 5.4.1. The reduced electric field is the electric field amplitude divided by
the distance

In particular, we will use this and separate out the time-independent parts of the
phase. For further convenience, we define R1 = |R− r1|, R2 = |R− r2|

F1 =
E1

R1

F2 =
E2

R2

φ1 = kR1 + ϕ1 φ2 = kR2 + ϕ2

E1(R, t) = F1 cos(φ1 − ωt) E2(R, t) = F2 cos(φ2 − ωt)

The superposition is then adding these waves up. We do this by harmonic addition
formulae:

E = (E1 + E2)(R, t) = F1(cos(φ1) cos(ωt) + sin(φ1) sin(ωt)) + F2(cos(φ2) cos(ωt) + sin(φ2) sin(ωt))

= (F1 cos(φ1) + F2 cos(φ3)) cos(ωt) + (F1 sin(φ1) + F2 sin(φ2))

E(R, t) = F cos(φ− ωt) = F (cos(φ) cos(ωt) + sin(φ) sin(ωt))
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We can clearly see the equivalence of the 2 forms.
This derivation can also be quickly done with complex exponentials by setting

E(R, t) = F cos(φ− ωt) = <Feiφe−iωt = <Ae−iωt

5.4.3 Phasors
We derived above that

F cos(φ) = (F1 cos(φ1) + F2 cos(φ3)) F sin(φ) = (F1 sin(φ1) + F2 sin(φ2))

=⇒ F 2 = F 2
1 + F 2

2 − 2F1F2 cos(φ1 − φ2)

A phasor diagram is a geometric interpretation. Imagine F1, F2, F as vectors and forming
a vector triangle for F = F1 + F2. The angles φ1, φ2 are the angles F[1], F2 make to the
horizontal respectively.

The angle φ is the angle between the tail end of F and F1.
Equivalently then, this is just the cosine law!
Furthermore, as I ∝ F 2, then

I = I21 + I22 − 2
√
I1I2 cos(φ1 − φ2) (5.2)

If the 2 sources are coherent, the total intensity is NOT the sum of the intensities of
both.

5.4.4 Interference and Intensity
The interference term, the 2F1F2 cos(φ1 − φ2) depends on the phase difference φ1 − φ2

between the 2 waves. This depends on 2 things:

• The initial phase difference ϕ1 − ϕ2. Imagine shifting the 2 waves initially. Then
you may get different amounts of constructive and destructive interference.

• The path difference: k(R1 −R2) =
2π
λ
(R1 −R2)

The intensity is proportional to |F |2, and there are 3 cases in comparison to I1 + I2:

• I > I1 + I2 suggests (complete) constructive interference

• I < I1 + I2 suggests (complete) destructive interference

• I = I1 + I2 means the polarisations of the waves are perpendicular

Furthermore, the extrema are

• Imax = I1 + I2 + 2
√
I1I2 = 4I0 if I1 = I2 = I0

• Imin = I1 + I2 − 2
√
I1I2 = 0 if I1 = I2 = I0

These correspond to in phase and anti-phase respectively.
Additionally, if the electric field vectors are not parallel, then we must use the vector

cosine rule
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5.4.5 Coherence, Interference and Diffraction
Definition 5.4.2. 2 or more waves are coherent if they have the same frequency (or
frequencies close to each other), and a constant initial phase difference. This may be zero
or non-zero.

2 beams that interfere will produce a stable interference pattern if the beams are
coherent

• Optical interference corresponds to the interaction of 2 or more light waves
giving a resultant intensity which deviates from the resultant sum of the individual
intensities

• Optical diffraction is the term describing the deviation from rectilinear propaga-
tion. This means instead of k being constant for a given position at a fixed time,
but varying the position (e.g., along a wavefront) gives different k

There are similar properties applied to other waves, but the physical parameters (such
as wavelength) differ

5.5 Young’s Double Slits
(insert figure) This is a strong piece of experimental evidence for the wave behaviour of
light.

• Consider 2 coherent sources of light, with equal intensities I1 = I2, and equal initial
phase ϕ1 = ϕ2

• They are incident on a screen with 2 small slits at positions r1, r2. The slits are
separated by distance a

• There is some observer at position R. The phase difference at this point depends
only on the path difference R1−R2 since the initial phase is the same and constant

• If the observer R is very far away, then R − r1,R − r2 are nearly parallel to each
other and so the direction of propagation, we can approximate k = k1 = k2

• The apertures can be taken to be infinitely small or point sources, if the vectors
R, ri,k are in a plane perpendicularto the screen (i.e., parallel to the normal vector
of the screen)

• Now we use elementary geometry and we see R2 − R1 = a sin(θ) where θ is the
angle between the screen and the normal between the 2 waves.

If I1 = I2 = I0, the intensity is given by (we see derivation later in Fraunhofer
diffraction)

I ∝ 2I0 + 2I0 cos(ka sin(θ))

I =∝ 2I0

[
1 + cos

(
2πa

λ
sin(θ)

)]
∝ 4I0 cos

2
(πa
λ

sin(θ)
)
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We use ∝ because we ignore the 1
R2 variance. Notice we have an oscillatory term in our

proportionality relationship for intensity. This means we will get maxima and minima of
intensity. These are the interference fringes.

To find the fringe spacing, we must consider the change in sin(θ) since the other
numbers are fixed. Using the small angle approximation, ∆(sin(θ)) ≈ ∆θ = λ

a
.

Lemma 5.5.1. Suppose the screen is a distance L away from the slits and the fringe
position is denoted X, then the fringe spacing denoted ∆X is:

∆X =
Lλ

a

5.5.1 Many slits
Suppose we have many slits instead. Choose a slit to have the position index 0, so it is
centred on the origin. Then the slits are at positions xj.

We again suppose amplitudes and initial phases are the same(same construction as
we did for 2 slits). Again, let R be far away, and let |R − rj| = Rj. Superimposing
everything:

A(R) ∝ A0

∑
k

eikx sin(θ)

Furthermore, if for each j, R[j]−R0 = xj sin(θ), this implies the equation directly above.

5.6 Huygens-Fresnel Principle
This principle was devised way before our understanding of light was that good. Hence,
it has a lot of shortcomings, but is still useful. This is stated as a theorem, but isn’t
actually a true theorem

Theorem 5.6.1. Huygens-Fresnel Theorem. (Incorrect, but useful tool). Every unob-
structed point of a wavefront, at a given instant, serves as a source of secondary spherical
wavelets, with the same frequency as the primary wave. The amplitude at any point
beyond this specific point, is the superposition of all these secondary waves, taking into
account their amplitudes and relative phases

The keeping of the frequency allows us to derive laws of reflection and refraction.
However, there are issues:

• Doesn’t really explain how light propagates

• There should also be backwards propagating wavelets as the waves are spherical.
This should cause extra interference, but this is not observed.



Chapter 6

Fraunhofer Diffraction

6.1 Fraunhofer vs Fresnel
The aim is to describe light propagation through an aperture. We use the HF principle to
combine spherical wavelets originating from points r inside the width, and to determine
the effects at position R.

• Fraunhofer says ϕ varies linearly with r over the aperture

• Fresnel says ϕ varies quadratically with r over the aperture

Fraunhofer diffraction works in the far-field limit. This is when R0 >>
a2

λ
where R0 is

distance to observation, a is slit dimension and λ is wavelength.

6.2 Spherical Waves
As we know, all waves should satisfy the 3D wave equation. In this section, we consider
everything emitting from point sources, and in this case, if they spread out equally in all
directions, they are spherical waves, as stated before.

We further assume they are monochromatic (so we don’t have to deal with a wavevec-
tor, just a wavenumber).The solution to the wave equation takes the form: U(x, t) =
u(x)e−ikct. Substituting this into the wave equation:

∇2U(x, t) =
1

c2
∂2

∂t2
U(x, t) =⇒ ∇2u(x)e−ikct =

1

c2
∂2

∂t2
u(x)e−ikct

=⇒ ∇2u(x)e−ikct =
1

c2
(−ikc)2u(x)e−ikct

=⇒ (∇2 + k2)u = 0

Definition 6.2.1. The equation (∇2 + k2)u = 0 is the Helmholtz equation. It is an
eigenvalue equation with eigenvalue k2, u is the eigenfunction.

It is a linear, second-order, homogeneous, autonomous, partial differential equation
and is a time-independent form of the wave equation.

Since we are considering spherical geometry, it is ideal to use spherical coordinates
to ease the calculation. In this case, the spherical Laplacian transforms the Helmholtz
equation into:

1

r2
d

dr

(
r2
du

dr

)
+ k2u = 0

39
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However recall from Equation 5.1 that the Laplacian is equal to a much simpler expression,
namely, the Helmholtz equation then reduces to

1

r

∂2

∂r2
(ru) + k2u = 0

Lemma 6.2.1. Solve the Helmholtz equation to get the fundamental solution

Proof.

1

r

d

dr

d

dr
ru+ k2u = 0 =⇒ 1

r

d

dr

(
r
du

dr
+ u

)
+ k2u = 0

1

r

(
du

dr
+ r

d2r

du2

)
+ k2u = 0

=⇒ d2u

dr2
+

1

r

du

dr
+ k2u = 0

See this resource for the rest of the details:

We then observe ru ∝ e±ikr and the fundamental solution is:

u = − 1

4πr
eikr := G(x) (6.1)

• We choose the positive exponent because the full waveform has the factor eik(r−ct)

and the wavefronts propagate radially outwards as time increases, i.e. they are
outgoing spherical waves which is what one would expect from a point source.
Taking the minus sign is physically interpreted as waves incident at a point, e.g. a
point sink.

• The constant of proportionality is − 1
4π

. To see why, integrate the Helmholtz equa-
tion over a ball of radius R centred on the origin and apply the divergence the-
orem to the Laplacian term. This will be done in the following lemma (NON-
EXAMINABLE):

Lemma 6.2.2. NON-EXAMINABLE.
Let B(0, r) be the open ball of radius R centred at the origin. The term ∂B is the

boundary of this ball. We include the boundary (divergence theorem). Let n be the positive
outward unit normal to the boundary.

ˆ
B(0,R)

(∇2 + k2)GdV = 1

Proof. Warning: heavy mathematics incoming:
ˆ
B(0,R)

(∇2 + k2)GdV =

ˆ
∂B(0,R)

n · ∇GdA+

ˆ
B(0,R)

k2GdV

ˆ
B(0,R)

k2GdV =

ˆ 2π

0

ˆ π

0

ˆ R

0

− k2

4πr
eikrr2 sin(θ)drdθdφ
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Now the integrand is continuous w.r.t. r, it is also continuous w.r.t θ. These functions
are as a result, Riemann-integrable over the given domains. We can therefore use Fubini’s
theorem and swap the limits of integration as so:

− k2

4π

ˆ R

0

ˆ π

0

ˆ 2π

0

reikr sin(θ)dφdθdr

−k2

2

ˆ R

0

ˆ π

0

reikr sin(θ)dθdr

−k2

2

ˆ R

0

reikr [− cos(θ)]π0 dr

= −k2
ˆ R

0

reikrdr = eikR(ikR− 1) + 1

ˆ
∂B(0,R)

n · ∇GdA =

ˆ 2π

0

ˆ π

0

∂

∂r

(
−1

4πr
eikr
)

r=R

R2 sin(θ)dθdφ

=⇒
ˆ
B(0,R)

(∇2 + k2)GdV = 1

This makes the integral independent of R, in particular, (∇2 + k2)G = δ(x), our funda-
mental solution is the (outgoing) Green function for the Helmholtz equation. This makes
sense: we put a source at the origin

6.3 Fraunhofer Diffraction

6.3.1 Diffraction from a slit
In this scenario, we align the coordinate system such that the origin is halfway through the
slit. The x̂ direction is aligned with the slit upwards, and the ẑ direction lies perpendicular
to x, normal to the slit. The y-axis points out of the plane.

• We have an opaque screen normal to ẑ

• The light is incident on this screen, parallel to the ẑ direction

• The slit ranges in
[
−a

2
, a
2

]
x̂

• Both the screen and slit are infinitely long in the ŷ direction

• As a result, the physics takes place in the xz direction

We consider an arbitrary point along the slit, at r = (x, 0) and an observer at the opaque
screen at R = (X,L). Furthermore, we define

• R0 is the distance between the centre of the slit (the origin) to the observer, so
|R| = R0

• R is the distance from the position along the slit to the observer, namely R = |R−r|

• L is the perpendicular distance between the slit origin and opaque screen. We
assume they are parallel, so this distance is fixed everywhere
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• X is the perpendicular distance from the observer to the z-axis

• θ is the angle between the slit and normal to the rays

Clearly then by Pythagoras’ theorem, R0 =
√
X2 + L2 and R ≈ R0 − x sin(θ).

From now on, make the assumption that the electric field amplitude E0 and initial
phase ϕ are independent of x.

Now:

Proposition 6.3.1. The superposition of spherical waves at position R is given by

E(R) ∝ <
ˆ a

2

−a
2

E

R(x)
ei(kR(x)−ωt+ϕ)dx

and the relative intensity as a function of θ is

I(θ)

I(0)
=

sin2
(
kxa
2

)
kxa
2

where kx = k sin(θ) (x-component of wave-vector k)

6.4 Fraunhofer Diffraction Integral (FDI)
You do not need to know this integral for the exam, but it will explain why we get the

following results in this chapter

The FDI can be worded as so:

Fraunhofer Diffraction Integral

The diffracted wave amplitude observed on a screen a large distance from an aper-
ture is proportional to the Fourier transform of the aperture.

Now, consider some aperture (screen with holes) and our observation screen. We
parameterise the aperture coordinates by (y1, y2) and the observation plane by (x1, x2).
The total diffracted wave amplitude is then given by adding up these sources from each
point of the aperture a distance D away.

u(x) =

ˆ
R2

−1

4π|x− y|
eik|x−y|A (y1, y2) dy1dy2 (6.2)

where the aperture itself will be given by a function A(y1, y2) that takes the value 1 at
points where light can get through the screen and 0 at points where it cannot. This is
Huygen’s principle.

using the Fraunhofer limit, D � x1, x2, y1, y2. In the denominator, we approximate
|x− y| ∼ D but not in the exponential. For the exponential term, we see

|x− y| = [(x− y) · (x− y)]1/2

=
[
|x|2 − 2x · y + |y|2

]1/2
= |x| − x · y

|x|
+ · · ·

≈ D − x1y1 + x2y2
D
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Substituting this back in to u gives the FDI as

u(x) =
−eikD

4πD

ˆ
R2

e−ik(x1y1+x2y2)/DA (y1, y2) dy1dy2 (6.3)

We can now analyse various 2D scenarios. Note that you should be able to attribute
the diffraction pattern to the type of aperture (e.g. circular, rectangular etc.). This was
a question asked in a previous exam (when this module was called PX276). You do not
need to be able to do all this analysis in the exam - it is too short for that.

6.5 2D Fraunhofer Diffraction
In this section, we will be using our multi-dimensional Fourier transform and the FDI
seen previously to analyse diffraction patterns through 2D slits.

6.5.1 Recap of 1D slits
Recall some important properties of fringes and slits, e.g. from Young’s slits:

• The fringe spacing ∆X is inversely proportional to the slit spacing a, so we will
observe a larger fringe for a narrower slit. This applies to each dimension of the slit

6.5.2 Rectangular Slit
Consider a rectangular slit of width 2w and height 2h centred on the origin, so the
aperture function is

A (y1, y2) =

{
1 (y1, y2) ∈ [−w,w]× [−h, h]
0 otherwise.

(6.4)

Using the FDI to find the observed amplitude:

Ã (x1, x2) :=

ˆ
R2

e−ik(x1y1+x2y2)/DA (y1, y2) dy1dy2 =

[
2w

sin (kwx1/D)

kwx1/D

] [
2h

sin (khx2/D)

khx2/D

]
(6.5)

This has the intensity

I (x1, x2) ∝
∣∣∣Ã (x1, x2)

∣∣∣2 = I0

[
sin (kwx1/D)

kwx1/D

]2 [
sin (khx2/D)

khx2/D

]2
(6.6)

The distance of the zero in intensity scales inversely with the physical size of the aper-
ture. Thus to see any appreciable spread in a beam the linear dimensions of the aperture
should be comparable to the wavelength of the light.

There is an example in Fig 6.1.
We see that the longer side 2h = 20λ has a shorter diffraction pattern (on the y-axis)

whereas the shorter side 2h = 10λ has a larger fringe (seen on the x-axis).
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Figure 6.1: Diffraction pattern and intensity curve of a rectangular slit with dimensions
2w = 10λ, 2h = 20λ with λ wavelength of incident monochromatic light.

6.5.3 Non-normal incidence
Suppose the incident light makes an angle θ to the normal direction of the aperture, i.e.
its wavevector is (k sin θ, 0, k cos θ). This modulates the light at the aperture by a phase
factor eiy1k sin θ so that the aperture function is now

Aθ(y1, y2) = eiy1k sin θA0(y1, y2) (6.7)

where A0(y1, y2) is the aperture function for normally incident light. By the convolution
theorem

Ãθ(x1, x2) = Ã0(x1 −D sin θ, x2) (6.8)
In other words, the diffraction pattern is the same but its position is shifted from
the centre of the screen to a point corresponding to the straight line between the source
and the screen (making an angle θ with the normal direction).

6.5.4 Young’s double slits
Consider two identical rectangular slits of width 2w and height 2h, with centres separated
by a distance 2` along the horizontal direction (y1). The aperture function may be written
in terms of that of a single rectangular slit as

A (y1, y2) = Aslit (y1 + `, y2) + Aslit (y1 − `, y2)

The diffracted wave amplitude then follows from the shift property of Fourier trans-
forms

Ã (x1, x2) = eik`x1/DÃslit (x1, x2) + e−ik`x1/DÃslit (x1, x2) = 2 cos (k`x1/D) Ãslit (x1, x2)

Using I ∝ |Ã|2, it then follows that the intensity observed on a distant screen is

I (x1, x2) = I0 cos
2 (k`x1/D)

[
sin (kwx1/D)

kwx1/D

]2 [
sin (khx2/D)

khx2/D

]2
.
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6.5.5 Circular Apertures
Consider a circular aperture of radius a so the aperture function is

A (y1, y2) =

{
1
√
y21 + y22 < a

0 otherwise
(6.9)

We switch to polar coordinates with the transformation

r =
√
x21 + x22 ρ =

√
y21 + y21 (6.10)

and φ for the angle in the aperture plane. Performing the FDI gives

Ã(r) =

ˆ π

φ=−π

ˆ a

ρ=0

e−ikrρ cosφ/Dρdρdφ =

ˆ a

ρ=0

(ˆ π

φ=−π

e−ikrρ cosφ/Ddφ

)
ρdρ. (6.11)

This integral cannot be solved using elementary functions. We define its solution to
be a special kind of function called a Bessel function of the first kind with

J0(ρ) =
1

2π

ˆ 2π

0

dφeiρ cosφ and
ˆ α

0

ρdρJ0(ρ) = αJ1(α) (6.12)

of order 0 and 1 respectively (denoted by subscripts). You don’t really need to know
anything about these functions, rather that they allow us to directly produce the solutions
for the diffraction pattern and intensity:

Ã(r) = πa2
2J1(kra/D)

kra/D
I(r) = I0

(
2J1(kra/D)

kra/D

)2

(6.13)

We call the resulting diffraction pattern (a bunch of concentric discs) the Airy pat-
tern or Airy discs.

The intensity at the centre of the bright Airy disc (r = 0) is I0 and it first vanishes
when

J1(kra/D) = 0 for r 6= 0

The first non-trivial zero of J1(x) occurs when x ≈ 1.22π, which recovers the angular size
(r/D) of the Airy disc as

δθ ≈ 1.22
λ

2a
(6.14)

You may recall this formula from other modules or reading. It is the Rayleigh criterion
for a circular aperture. An Airy disc can be seen in Fig 6.2.

6.6 Rayleigh Criterion
Suppose we have 2 distant point sources whose light travels through some lens or mirror
(like our eye, or telescope). Assume the sources are independent, i.e. their light is
incoherent with each other. Then we will observe 2 diffraction patterns, one formed by
each source, which may or may not overlap.

Just remember:

δθ ≈ 1.22
λ

2a
=

wavelength of incident light
diameter of aperture

(6.15)
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Figure 6.2: The diffraction pattern and intensity for a circular aperture, also called an
Airy disc.

Definition 6.6.1. We call the minimum resolvable angle δθmin the critical angle - the
angle at which you can just about resolve the 2 objects, i.e. see each of them individually.

Fig. 6.3 depicts 2 objects which are barely resolvable and Fig. 6.4 depicts objects
which are clearly resolvable.

6.7 Diffraction grating
Definition 6.7.1. A diffraction grating is an optical element (aperture) consisting of
a large number of identical, equally spaced, narrow slits.

We will suppose as usual that the slits are rectangular of width 2w and height 2h,
and that the spacing between them is 2`.

y1 = −(N − 1)`+ n2`, n = 0, 1, . . . , N − 1,

and y2 = 0. The aperture function is

A (y1, y2) =
N−1∑
n=0

Aslit (y1 + (N − 1)`− 2n`, y2) ,
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Figure 6.3: Diffraction and intensity of minimally resolvable objects, when δθ = δθmin.

and hence the diffracted wave amplitude is

Ã (x1, x2) =
N−1∑
n=0

eik(N−1)`x1/D−i2nk`x1/DÃslit (x1, x2) ,

= eik(N−1)`x1/D

(
N−1∑
n=0

e−i2nk`x1/D

)
Ãslit (x1, x2) ,

= eik(N−1)`x1/D

(
1− e−i2Nk`x1/D

1− e−i2k`x1/D

)
Ãslit (x1, x2) ,

=
sin (Nk`x1/D)

sin (k`x1/D)
Ãslit (x1, x2) .

An example of repeating rectangular slits is seen in Fig. 6.5
We observe the same behaviour as Fig 6.1 but now we have small fringes between the

larger, blocky fringes. These small fringes are the interference patterns generated by the
diffraction of the light through the slits.
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Figure 6.4: Diffraction and intensity of clearly resolvable objects, when δθ � δθmin.

Figure 6.5: Diffraction pattern and intensity currve of a rectangular slit with dimensions
2w = 10λ, 2h = 20λ with λ wavelength of incident monochromatic light and l = 25λ



Chapter 7

Lagrange Multipliers

7.1 Definitions and Multivariable Calculus
The method of Lagrange multipliers is used to find critical points of functions subject to
some constraint. We begin with some important definitions and mathematics.

Definition 7.1.1. For 1 ≤ i ≤ n, ∂xi
f(x) is called the ith-partial derivative of f :

U → Rk∀x ∈ U . It is more simply denoted by ∂i(x) = ∂f
∂xi

Definition 7.1.2. Let f : Rn → Rk be a differentiable function. Then the grad op-
erator grad(f) = ∇f is a column vector of all partial derivatives of f . Namely, if
x = (x1, . . . , xn) ∈ Rn, then

∇f =


∂f
∂x1
∂f
∂x2...
∂f
∂xn


The definitions from now up until Definition 7.1.10 is non-examinable but are pre-

sented here for a bit more completeness.

Definition 7.1.3. Let f : U → R, U ⊂ R2 be a C1 (continuously differentiable) function,
and let x ∈ U . Then a point pc ∈ U : ∇f(pc) = 0 is called a critical point of f in U

Definition 7.1.4. Let f be a map Rn → Rk. Then its kernel, ker(f) = {x ∈ Rn|f(x) =
0 ∈ Rk}

Definition 7.1.5. The Jacobian matrix at x, ∂f(x) of f : U → Rk, where

f(x) =

f1(x)...
fk(x)


is a column vector, is defined as

∂f(x) =

∂1f1(x) . . . ∂nf1(x)
... ...

∂1fk(x) . . . ∂nfk(x)
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For the Jacobian to exist, we have assumed that f ∈ C1(U,Rk)

Definition 7.1.6. The Hessian matrix at x, ∂2f(x) of f : U → Rk, where

f(x) =

f1(x)...
fk(x)


is a column vector, is defined as

∂2f(x) =

∂11f1(x) . . . ∂1nf1(x)
... ...

∂n1fk(x) . . . ∂nnfk(x)


For the Jacobian to exist, we have assumed that f ∈ C2(U,Rk)

Definition 7.1.7. A critical point of f is called non-degenerate/morse if det(∂2f) 6= 0

Definition 7.1.8. A point x ∈ U is isolated if there exists a neighbourhood of x, Nx,
where, ∀xδ ∈ Nx, f(xδ) 6= 0.

This means a critical point is isolated, if any points really close to it, are not critical.
A more topological definition is:

The functions:

x2 + y2 + z2 x2 + y2 − z2 x2 − y2 − z2 −x2 − y2 − z2

Have gradients:

2x+ 2y + 2z 2x+ 2y − 2z 2x− 2y − 2z −2x− 2y − 2z

which are zero at x = (x, y, z) = (0, 0, 0) = 0. In particular, this is an isolated critical
point, since if we move by a vector δx = (δx, δy, δz) 6= 0, then the gradients become
non-zero instantly
Definition 7.1.9. The number of minus signs appearing in each function (0, 1, 2 or 3)
is the dimension of the negative eigenspace of the Hessian at the critical point, which is
known as the Morse index

With this Morse index, we can use the following statement (without proof, non-
examinable)
Corollary 7.1.1. All non-degenerate critical points are equivalent to one of these canon-
ical forms - the quadratic equations displayed above

We will not be using this lemma directly, but it’s important to realise for constraint
problems, that there is often a non-trivial solution(s), i.e. the set of all critical points is
not just the origin.
Definition 7.1.10. A constraint function is a function g : Rn → R which needs to
vanish (equal 0)

This is very important for the method of Lagrange multipliers. Since we need to
satisfy the constraint function, we need to find all points c ∈ Rn : g(c) = 0. This is the
kernel of the map.

This means, we must restrict our target function f to have domain of ker(g), i.e.
instead of considering f : Rn → R, we will be forced to restrict the domain of f such that
we consider f : ker(g) → R
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7.2 Lagrange Multipliers
Lagrange Multipliers is mathematical method to solve (a system of) equations f subject
to constraint functions g1, . . . , gk. We will mathematically formulate a generic Lagrange
Multipliers problem :

Theorem 7.2.1. Let f : Rn → R be a C1 function and let there be k constraint functions
g1, . . . , gk : Rn � R that are also C1. Let x = (x1, . . . , xn) ∈ Rn.

Then the critical points of f subject to the constraints gi = 0 are given by the uncon-
strained critical points of the function

f −
k∑

i=1

λigi

Namely, the following set of partial differential equations are satisfied:

∂f

∂xj
−

k∑
i=1

λi
∂gi
∂xj

= 0∀1 ≤ j ≤ n (7.1)

=⇒ ∇f −
k∑

i=1

λi∇gi = 0 (7.2)

where ∇f is the grad of f , and the λi are the Lagrange Multipliers

Remark. Why do we require gi = 0? Well it’s more of a convenience. Constraint functions
could be in the form of something like x2 = 3y2. But since we are in real Hilbert space,
we can make the rearrangement x2 − 3y2 = 0 and then cast this to g(x, y) = 0!

This means, when using this method, we will have:

• n partial differential equations for functions of n variables. This leads to n equations
and n unknowns: the x1, . . . , xn

• The k Lagrange multipliers, taking us up to n+ k unknowns with n equations

• But we have the k constraint equations, so we have n + k equations for n + k
unknowns

• By the rank-nullity theorem we can find non-trivial critical points.

Remark. We need not use Cartesian coordinates x, y, z. We could have a problem in
spherical, hyperbolic, conical coordinates... whatever we want really. We just need to
make sure we differentiate with respect to the appropriate variables.

7.3 Stationary Phase and Fourier
Wave disturbances in a field u(x, t) can be written as a Fourier transform:

u(x, t) =
1

(2π)2

ˆ ˆ
ei(kx−ωt)ũ(k, ω)dkdω

where the integral is taken over all 2-tuples k.ω that satisfy the dispersion relation
D(k, ω) = 0.
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In such an integral, the oscillations in the complex exponential interfere destructively
except near those points (k, ω) where the phase is stationary, subject to the constraint
that the dispersion relation is satisfied.

Thus, the wave disturbance can be approximated by the condition of stationary phase.
Using Lagrange Multipliers, the constrained critical points of the phase satisfy

x− λ
∂D

∂k
= 0 −t− λ

∂D

∂ω
= 0

So then, rearranging and performing x/t:

x

t
=

−∂D/∂k
∂D/∂ω

=
∂ω

∂k

This is the group velocity

7.4 Shannon Entropy
Claude Shannon introduced a method for choosing probabilities based on only partial
information using Lagrange Multipliers. Suppose X is a discrete random variable taking
one of N values xi, i = 1, . . . , N , with probabilities pi. If all we are told is that the
expectation value of X is 〈X〉, then what values should we take for the probabilities?
The solution is to maximise the entropy function:

S = −
N∑
i=1

pi ln(pi)

subject to the constraints which are the normalisation condition (sum of probabilities
add to 1) and that the expectation value is equal to 〈X〉:

g1 =
N∑
i=1

pi − 1 = 07g2 =
N∑
i=1

pixi − 〈X〉 = 0

As per the method, we have N equations of the form

∂

∂pi
(S = λ1g1 − λ2g2) = −(ln(pi + 1))λ1 − λ2xi = 0∀i

alongside the 2 constraint equations, for a total of N + 2 equations for N + 2 unknowns.
Rearranging for the probabilities:

pi = e−(1+λ1)−λ2xi = e−(1+λ1)e−λ2xi (7.3)

Using the constraint function g1:

N∑
i=1

e−(1+λ1)e−λ2xi − 1 = 0

N∑
i=1

e−λ2xi = e1+λ1 := Z
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We have just derived the partition function (see Statistical Mechanics).
The Lagrange multiplier λ2 is determined from the constraint function g2 from sub-

stituting in the partition function:

N∑
i=1

pixi = 〈X〉 =⇒
N∑
i=1

e−(1+λ1)e−λ2xixi = 〈X〉

=
1

e−(1+λ1)

N∑
i=1

e−λ2xixi = 〈X〉

=⇒ 〈X〉 = 1

Z

N∑
i=1

e−λ2xixi = −∂ ln(Z)
∂λ2

We have derived the expectation value!

7.5 Summary of Lagrange Multipliers
This is the general method to approach a Lagrange Multipliers question. It is almost
guaranteed to appear and should be one of those questions that is a free 6-8 marks. So,
here we go:

1. Identify the function you are trying to extremize (call it something like F if it isn’t
labelled). Additionally, identify all your constraint functions. Rearrange them so
that they each equal 0, and label each function something memorable like g1, g2 etc.

2. Formulate the PDEs as in Eq. (7.1).

3. Solve them to either get a relationship between the Lagrange multipliers and known
quantities, and eliminate them. Make sure whatever expressions you get are con-
sistent with the other PDEs

4. Substitute the minimising parameter(s) back into F to get the quantity desired
(aka., read the question again and confirm what it wants as a final answer).
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Chapter 8

Indices and Notation

8.1 Einstein Summation Notation
Einstein Summation Notation can be summarised as following:

Do not write summation signs; they are implied by repeated (twice only) indices.

With the following remarks:

• Writing an index once implies no summation

• Writing an index three times or more implies you did an oopsie somewhere

Regardless, one should always check that the expression makes sense:

• The indices must span over the correct range of numbers. This is usually clear from
context but it’s better to explicitly state it.

Definition 8.1.1. A dummy index is a index that is summed over.

It’s called dummy because even if you change the symbol, it still represents an index
being summed over some range. There is the equivalent

Definition 8.1.2. A free index is an index which represents an independent dimension
of a quantity. It is not used to represent summations.

Let’s go through some examples to make this concrete. We first clear up some nota-
tion:

A vector in Rn is defined by x = (x1, . . . , xn). A vector space like Rn has a basis,
which is a subset containing vectors which are linearly independent and span the entire
space. We denote these vectors by ei for the ith basis vector. Then

x =
n∑

i=1

xiei = xiei (8.1)

Notice: we have removed the sum but kept the i. We implicitly sum over i = 1, . . . , n.
We could turn the i into a δ and it would mean the same thing. This is a dummy index.

55
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Definition 8.1.3. Let V be a Euclidean vector space with an inner product (i.e. the
regular dot product). Let a,b ∈ V , where a = (a1, a2, a3);b = (b1, b2, b3). Then the dot
product (·, ·) is defined as

a · b =
3∑

i=1

aibi = aibi

So the idea of index notation can greatly simplify writing stuff down as long as sum-
mation convention is implied.

We will denote an m × n matrix by (Mij) where i represents the row index and j
represents the column index. Note that Mij (without the brackets) represents the (i, j)th
element of the matrix M . Observe that whilst we can change i, j to be different letters,
e.g. Mij = Mαβ if we set i = α, j = β, we can’t swap their positions without possibly
changing the meaning! Namely, Mij 6= Mji unless the matrix is symmetric! This means
they are free indices - they are represent one ‘dimension’, are independent of each other
and are not always used for summation.

So now we can extend this notation to various things.

8.1.1 Matrix multiplication and vectors
Consider 2 matrices A,B. Then their product AB = (AB)ij is defined as

(AB)ij =
∑
k=1

AikBkl = AikBkj (8.2)

Remember to get the (i, j)th element of a product of matrices, you take the ith row of
matrix A, then you add up the products of each element in that row (i.e., you index the
columns by k) and multiply each element by the corresponding element in the jth column
of B (i.e. you index the rows of B by k). To help you see it more clearly, an explicit
calculation of a 3x3 multiplication is done:a11 a12 a13

a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 (8.3)

Consider the element c12. To find this, you would ‘multiply’ row 1 of A by column 2 of
B, so c12 = a11b12 + a12b22 + a31b32. Notice only the inner 2 indices are changing - this is
what we are summing over!

If you were to multiply 3 matrices A,B,C together, the same logic applies: (ABC)ij =
AikBklClj. Here, we have 2 summations: one over k and one over l - they are the dummy
indices. i, j are free (unlike us students :( ).

Next, consider the equation
Ax = b

We can convert this into index notation. x,b are vectors - so they only have 1 dimension
we can write them with one index, e.g. xj and bi. A = (A)ij, so

Ax = b ≡ Aijxj = bi

Namely, to get the ith element of b, we take the ith row of A and multiply it by the
elements of vector x.
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8.2 Special tensors
We will not cover what tensors are, but these 2 symbols are quite special and we will
make use of them a lot.

Definition 8.2.1. The Kronecker Delta δij is defined as

δij =

{
0 i 6= j

1 i = j
(8.4)

Observe that the identity matrix Iij has ones when the row and column index match,
i.e. i = j and 0 when they don’t. This is exactly what the Kronecker delta represents,
so Iij = δij.

Definition 8.2.2. The Levi-Civita or fully antisymmetric tensor εijk... exists in all
dimensions and its elements are one of 0,±1. We will need only up to 2D (εij) and 3D
(εijk) in this module, but its definition is quite confusing.

In 3D, i, j, k can each be any of 1, 2, 3. First point:

If any time i = j or j = k or i = k, then it is 0. For example,
ε111 = ε112 = ε121 = . . . = 0.

Second, consider the element ε123 = 1, and then any element εi1,i2,i3 . We can pairwise
swap 2 indices. Define p - the parity - as the number of pairwise swaps you need to do
so that the order of i1, i2, i3 is the same as 123. Then:

εi1,i2,i3 = (−1)pε123 (8.5)

8.2.1 Indices that aren’t being summed
So we have free indices and dummy indices. Can we still have indices which aren’t either?
Namely indices which are literally just labels? Yes! Consider the eigenvalue equation

Ax = λx ≡ Aijx
α
j = λαx

α
i α = 1 . . . n

Here, although α is an index, it only labels what number eigenvalue-eigenvector is being
considered. It does not imply a sum!

8.3 Matrices
We are now going to state a whole bunch of definitions for matrices which you may
be familiar with, but recast it all in index notation with summation convention. Some
definitions will need multiple read throughs and it is a good idea to try and derive these
yourself. Let A,B,C be matrices.

Definition 8.3.1. The transpose of a matrix A = (A)ij is when every row becomes a
column and every column becomes a row. It is denoted AT = (A)ji

Definition 8.3.2. A matrix A is symmetric if Aij = Aji for all i, j. This can only be
true if the matrix is square.

A matrix A is antisymmetric if Aij = −Aji for all i, j. This can only be true if the
matrix is square.



58 CHAPTER 8. INDICES AND NOTATION

Definition 8.3.3. A matrix is orthogonal if ATA = I. Equivalently, AkiAkj = δij.

An example of an orthogonal matrix is the 2D rotation matrix.

Definition 8.3.4. The trace of a matrix A is the sum of all elements of its leading
diagonal, so trA = Aii.

Lemma 8.3.1. The determinant of a 3× 3 matrix is

detA = εijkA1iA2jA3k (8.6)

In 2D, it is
detA = εijA1iA2j (8.7)

Proof. This is non-examinable and requires some linear algebra/group theory from first
or second year modules. However:

You must be able to use these definitions to prove determinant properties, namely you
should be able to prove

detAB = detA detB (8.8)

8.3.1 Gotchas
Matrices by constructions are not commutative, i.e AB 6= BA in general, except in
some cases. However, scalars do commute1.

Suppose we have two vectors a,b and a matrix C. Then

Cijaj = Cijbj 6 =⇒ aj = bj (8.9)

Moreover, there is no reason based off index notation that C would have an inverse.

Be careful when you swap the orders of terms in index notation. The only reason you
can do this is because they are numbers. Just because you can swap them around in

index form doesn’t eman you can swap them in vector form!

8.4 Vector Calculus
Consider the divergence of a vector field v = (v1(x1, . . . , xn), . . . , vn(x1, . . . , xn))

∇ · v =
∂v1
∂x1

+ . . .+
∂vn
∂xn

=
n∑

i=1

∂vi
∂xi

In particular, observe we again have 2 occurrence of the index i, so using Einstein notation
we have:

∇ · v =
∂vi
∂xi

An alternative way to write this, is to define:

∂i =
∂

∂xi
=⇒ ∇ · a = ∂ivi

This is a more concise way of writing the divergence.
1Matrices are vector spaces over a field of scalars



8.5. TENSORS 59

Lemma 8.4.1. Consider the vector product in 3D of 2 vectors: u = (u1, u2, u3,v =
(v1, v2, v3). The vector product is:

u× v = (u2v3 − v2u3)e1 + (u3v1 − v3u1)e2 + (u1v2 − v1u2)e3

Then we can write the ith component of u× v as (u× v)i = εijkujvk

Proof. Consider the component of e1, which is u2v3 − v2u3. We observe that only 2s and
3s appear in this expression. In particular, we have +u2v3e1 which corr

This allows us to define the curl of a vector (field):

Corollary 8.4.1.
(∇× u)i = εijk∂jvk (8.10)

Proposition 8.4.1. Maxwell’s equations in free space can be written in index notation
as

∇ · E = 0 −→ ∂iEi = 0,
∇ ·B = 0 −→ ∂iBi = 0,
∇× E+ ∂B

∂t
= 0 −→ εijk∂jEk + ∂tBi = 0,

∇×B− µ0ε0
∂E
∂t

= 0 −→ εijk∂jBk − µ0ε0∂tEi = 0.

Proof. This can be easily derived by using the definitions and statements proven above.

Remark. A fairly nasty index question in the 2023 exam involved Maxwell’s equations
and proving vector identities!

You will be expected to use this to prove general vector calculus identities in the
exam.

Example 2.
We calculate ∇×∇φ using index notation

(∇×∇φ)i
1
= εijk∂j∂kφ

2
= εijk∂k∂jφ

3
= −εikj∂k∂jφ

4
= −(∇×∇φ)i.

The first step converts to index notation. The second uses symmetry of mixed
partial derivatives ∂j∂kφ = ∂k∂jφ. The third uses antisymmetry of the Levi-Civita
symbol, εijk = εikj. The fourth converts back from index notation; the conclusion
is clearly that ∇× ∇φ = 0.

Lemma 8.4.2. Prove the identity ∇× (∇× E) = ∇(∇ · E)−∇2E.

Proof. The left-handside is

[∇× (∇× E)]i
1
= εijk∂j (εklm∂lEm)

2
= (δilδjm − δimδjl) ∂j∂lEm

3
= ∂i∂jEj − ∂j∂jEi

8.5 Tensors
Vectors talk about quantities with a magnitude and one direction, e.g. velocity is a vector
where each element corresponds to a speed in one direction. A tensor generalises this to
talk about quantities in multiple directions. They also obey specific transformation laws.
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8.5.1 Orthogonal Matrices and Coordinate transforms
Under a general change of coordinates, the new coordinates x′i will be related to the old
ones by a transformation

x′i = Rijxj + ti,

where ti is a translation and Rij an orthogonal transformation - rotation or reflection.
We will restrict to transformations that preserve the origin and have ti = 0. These are
known as homogeneous transformations.

Any such transformation does not change the length of the vector x, which implies

xixi = x′ix
′
i = RijxjRikxk, ⇒ RijRik = δjk.

There are 2 types of orthogonal transformations: the transformations that preserve
orientation (i.e. the rotations) and those that reverse it (i.e. the reflections).

Since the coordinates xi are equally the components of the position vector x, the
relationship x′i = Rijxj also describes how the components of a vector change under the
coordinate transformation. Thus, for any other vector like the force fi or electric field Ei

we have the same relationship

f ′
i = Rijfj, E ′

i = RijEj.

Let us see what this implies for other tensors. We use as an example the conductivity,
Ji = σijEj. We have, trivially, that J ′

i = σ′
ijE

′
j and then by the transformation for vector

components
RikJk = σ′

ijRjlEl, ⇒ Rikσkl = Rjlσ
′
ij.

Finally, using that Rij is an orthogonal transformation we can write this as

σ′
ij = RikRjlσkl.

For a tensor of rank n, one finds the natural extension of this relationship: the
components transform according to

T ′
i1i2···in = Ri1j1Ri2j2 · · ·RinjnTj1j2···jn

8.5.2 Isotropic Tensors
Definition 8.5.1. An isotropic tensor is one whose components are independent of
the coordinate system.

This means if you try to transform an isotropic tensor by any orthogonal transforma-
tion Rij, you just end up with the same tensor.

Lemma 8.5.1. The Kronecker Delta δij is isotropic.

Proof. The kronecker delta is a rank 2 tensor, so we try to transform with two orthogonal
transformations, we see that

RikRjlδkl = δij (8.11)

Proposition 8.5.1. The only linearly independent rank 3 isotropic tensor is the Levi-
Civita symbol εijk



8.5. TENSORS 61

Proof. See this useful document.

Proposition 8.5.2. There are 3 linearly independent 4th rank isotropic tensors:

δijδkl δikδjl δilδjl (8.12)

Remember - these are all different because the positions of the free indices are dif-
ferent. At this point it’s not worth trying to think of these as matrices, they would be
‘4D’ matrices at this point.

Look at that, you’re at the end of the module now, good luck with revision!
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